
Open Document Management API
Version 2.0

Overview__ 3
Document IDs __ 4
Constants __ 6
Error Handling__ 6
Connections and the ODMA Connection Manager _________________________________ 7
Document Format Names__ 7
DMS or Native File System Dialogs - Which to Display First ________________________ 9
Character Sets__ 9
Application Interfaces ___ 9
Query Syntax __ 10
Query Examples ___ 11

ODMA API__ 12
ODMActivate __ 13
ODMCloseDoc ___ 16
ODMCloseDocEx __ 18
ODMGetAlternateContent___ 20
ODMGetDMS __ 22
ODMGetDMSCount __ 23
ODMGetDMSInfo___ 24
ODMGetDMSList___ 25
ODMGetDocInfo ___ 26
ODMGetDocRelation ___ 28
ODMGetLeadMoniker __ 31
ODMNewDoc __ 32
ODMOpenDoc ___ 35
ODMQueryCapability___ 38
ODMQueryClose ___ 40
ODMQueryExecute___ 41
ODMQueryGetResults__ 43
ODMQueryInterface __ 44
ODMRegisterApp __ 45
ODMSaveAs ___ 47
ODMSaveAsEx___ 50
ODMSaveDoc__ 54
ODMSaveDocEx ___ 55
ODMSelectDoc __ 57
ODMSelectDocEx __ 59
ODMSetAlternateContent ___ 62
ODMSetDMS___ 64
ODMSetDocEvent__ 65
ODMSetDocInfo ___ 67
ODMSetDocRelation ___ 69
ODMUnRegisterApp__ 72

DMS Interface __ 73
ODMGetODMInterface__ 73
IODMDocMan Interface ___ 74

ODMA Version 2.0 2 September 19, 1997

IODMQuery Interface ___ 75
IODMDocMan2 Interface__ 76

Binding to the API __ 78
Windows 3.x, Windows 95 and Windows NT _____________________________________ 78

Installing a DMS __ 78
Windows 3.x, Windows 95 and Windows NT _____________________________________ 78

Installing a Client Application __ 80
Windows 3.x, Windows 95 and Windows NT _____________________________________ 80

Connection Manager Trace Logging _______________________________________ 82
Windows 3.x, Windows 95 and Windows NT _____________________________________ 82

Appendix A __ 84
Document Attributes ___ 84

Appendix B __ 87
Preferred Call Usage for Initial File Creation _____________________________________ 87

Revision History

Version 1.0 - with small BHC-325 at the end of the document
Brad Clements, SoftSolutions. This is the original version.

Version 1.0 - with small DM1\285 at the end of the document
Mike Gardiner, Novell. This contains additional information for registering
ODMA under Windows 95 and NT. It also adds a new table for document
ID constants.

Version 1.0a
Rod Schiffman, Novell. Additional information on the ODMA spec
background, usage of calls, suggestions on the use of document ID
character sets and the addition of ODM_E_INUSE as a valid return code
in ODMActivate.

Version 1.5
Jerry (Gerald) Willett, PC DOCS, Inc. Added the Query specification.
This included the Query Syntax and Query Examples sections and the
ODMQuery* functions and the IODMQuery COM interface. Also added a
clarification to the expected behavior of an application when calling
ODMSaveAs and an empty string is returned for lpszNewDocId.

Version 2.0
Bob St.Jean, Digital Equipment Corp. Added additional attributes and
functions to improve ODMA support for popular Document Management
System (DMS) features. These are mostly defined in a new
IODMDocMan2 interface. Defined several items to help provide better
out-of-the-box integration between desktop applications and DMSs. Also
added clarifications to the existing specification and arranged the
functions alphabetically.

ODMA Version 2.0 3 September 19, 1997

Overview

The original impetus for the Open Document Management API (ODMA) was the
recognition that there was no standard method for a client application to
integrate with a Document Management System (DMS). Each DMS vendor
wrote separate integration code for each of the major client applications they
supported. Applications that did not have integrations written for them by the
DMS vendors would have to write and support a separate integration for each
DMS that was supported. This required a complete matrix of integrations, each
with its own set of bugs, limitations and reliability issues. It seemed obvious that
a high level standard for connecting applications and document management
systems was a natural fit.

A small group of application and DMS vendors started working together to create
an API that would allow applications and document management systems to
inter-operate through a single high level API. This implied the creation of a
standard, however, the creation of a standard has many pitfalls. Probably the
biggest problem is that a lot of work can be put into the creation of the standard,
and nobody uses it.

The industry is filled with examples of standards that were obsolete by the time
they made it through the standardization process. By the time some standards
make it through the standardization process, they are so large and unwieldy they
are almost impossible to implement and maintain. Company politics and hidden
agendas of the participants can play as big a role in the adoption of a standard
as trying to solve the problem in the first place. The industry is also full of
proprietary API’s that claim to be standards, but are not. The initial group of
vendors that met and formed the ODMA consortium wanted to avoid as many of
these problems as possible.

The working rules of the ODMA consortium are fairly simple.

1. If the standard does not solve a problem it will not be used.
2. If the creation of the standard takes a long period of time, it does not solve

the problem.
3. If the standard is difficult to implement, it does not solve the problem.
4. The standard must be vendor independent.
5. The standard must not try to solve all vendors’ problems, or it will be big,

complex and take a long time to implement. This violates rules 1, 2 and 3
above.

6. It is the customers that lose if there is not a straightforward way to integrate
applications that create documents and applications that manage documents.

7. Easy integration between applications and document management systems
will grow the industry and increase sales for the entire marketplace.

ODMA Version 2.0 4 September 19, 1997

It is difficult to express the importance the initial members of the consortium
placed on wanting to create a useful API that is vendor and platform
independent while still simple to implement. They recognized that they could
solve 80 percent of the problem easily and were willing to live with having to
solve another 10 percent over time and probably never being able to solve the
final 10 percent.

The Open Document Management API (ODMA) is a standardized, high-level
interface between desktop applications and document management systems
(DMSs). Its purposes are:

1. To make DMS services available to users of desktop applications in a
seamless manner so that these services appear to the user like extensions of
the applications.

2. To reduce the application vendors' burden of having to deal with multiple
DMS vendors. By writing to ODMA, an application vendor has potentially
integrated his application with all supporting DMSs.

3. To reduce the DMS vendors' burden of integrating with multiple applications.
By supporting ODMA a DMS vendor has potentially integrated with all
applications that have written to ODMA.

4. To reduce effort and complexity needed to install and maintain DMSs.

ODMA specifies a set of interfaces that applications can use to initiate actions
within a DMS. The API is intended to be relatively easy for application vendors
to incorporate into updates of existing applications. It should not require major
restructuring of an application to integrate it with ODMA. Note that this version
of ODMA does not specify how DMSs may initiate actions within the
applications.

The ODMA API is platform-independent. The associated data type definitions
and binding information are platform-specific. Currently, most of the work has
been done in Windows. It makes this document look Windows specific, but over
time, the platform specific entries for other platforms will be added as they are
defined.

Document IDs

Many of the ODMA functions accept or return a Document ID parameter. A
document ID is a persistent, portable identifier for a document. It can be stored

ODMA Version 2.0 5 September 19, 1997

and used in a later session, and it can be passed across platforms via email or
other processes.

A Document ID is a case insensitive, null-terminated string of printable
characters. Although a document ID is case insensitive, an application should
never change the case of a document ID. The format of a document ID is

::ODMA\DMS_ID\DM_SPECIFIC_INFO

The DMS_ID portion of a document ID will identify which DMS provided the ID.
This information is primarily for the use of ODMA itself; applications using ODMA
should not need to know which DMS provided a particular ID. The ODMA group
members will coordinate these IDs to ensure their uniqueness. The maximum
length of the DMS_ID portion of the document ID is specified by the constant
ODM_DMSID_MAX. The DM_SPECIFIC_INFO portion of the ID will vary
depending on which DMS built the ID. The total length of the document ID
including the terminating Null character cannot exceed ODM_DOCID_MAX
bytes.

ODMA-aware applications should be able to handle a document ID anywhere
they handle an externally-generated document filename. For example, if the
application allows a document filename to be passed as a command line
argument then it should allow a document ID to be passed in the same way. If
the application allows document filenames to be used in DDE commands then it
should also support the use of document IDs in the same commands.

Although the technical definition of a document ID is a case insensitive, null-
terminated strings of printable characters, there are some general rules that are
more likely to make a DMS and ODMA application work better together. ODMA
was designed so that it would be easy to add to an application without major
modifications in code or structure. If a DMS passes a document ID that breaks
fundamental rules of normal file and path names it will probably run into
problems if it is passed in on a command line. Special characters like ^, [,], |, *,
-, >, < and ? are processed by the UNIX shell even before they are seen by the
application. It is possible to pass these characters by using special escape
sequences, but that places a burden on the DMS vendor to process the
document ID before giving it to the ODMA application. Some operating systems
require the application to handle the reverse process of interpreting and
removing the escape characters. The application may be able to support the
escape removal on the command line, but not if the document ID with escape
characters is returned in a procedure call. In most cases, it is easier to generate
a document ID that contains a fairly simple set of characters. The following table
suggests characters it may be wise to avoid for different platforms.

Platform Characters to avoid

ODMA Version 2.0 6 September 19, 1997

Platform Characters to avoid
Windows 3.x " ‘ < > * ? | and the space character

Windows 95 " ‘ < > * ? |

Other platforms to be defined

Constants

The following table lists the constants that are defined in the odma.h header.

CONSTANTS Win 3.x Win32 Mac UNIX Other

ODM_DOCID_MAX
Maximum length of a document ID
including the null-terminator.

80 255 255 255 255

ODM_FILENAME_MAX
Maximum length of a path/filename
returned by ODMA including the
terminating Null character.

128 255 255 1024 255

ODM_API_VERSION
The version of the ODMA API to which
this header file corresponds. See
ODMRegisterApp.

200 200 200 200 200

ODM_DMSID_MAX
Maximum length of a DMS ID
including the null-terminator.

9 9 9 9 9

ODM_APPID_MAX
Maximum length of an Application ID
including the null-terminator.

16 16 16 16 16

ODM_FORMAT_MAX
Maximum length of a content format
string including the null-terminator.

81 81 81 81 81

ODM_QUERYID_MAX
Maximum length of a query ID string
including the null-terminator.

255 255 255 255 255

Error Handling

Nearly all of the ODMA functions use the return value to indicate to the calling
application whether the function succeeded, failed because the user canceled
the operation, or failed for other reasons. The DMS is responsible for displaying

ODMA Version 2.0 7 September 19, 1997

informational error messages to the user where appropriate except when the
ODM_SILENT flag is specified. The DMS must take care to return the
appropriate error indication because applications may act differently depending
on whether an ODMA call was canceled by the user or failed for other reasons.
The calling application generally should not display error messages when an
error value is returned from ODMA unless the ODM_SILENT flag was specified.

Connections and the ODMA Connection Manager

The ODMA connection manager is a small software module that sits between
applications using ODMA and document management systems implementing
ODMA. It manages the connections between these components and routes
ODMA calls to the appropriate provider. A freely redistributable copy of the
ODMA connection manager will be provided to any vendor wishing to implement
or make use of the ODMA API. This is a place where it would be possible to
provide mapping code that would allow ODMA to have truly platform
independent document IDs, however, it currently only manages connections and
does not touch document IDs.

Document Format Names

When new documents are registered with a DMS via ODMA and when an
existing document's format is changed by an application, the application passes
a document format name to ODMA. Document format names are null-terminated
strings defining the format of a document's content. These strings have a
maximum length defined by the ODM_FORMAT_MAX constant.

There are several places in ODMA where a content format name for a document
can be specified or requested. The ODMNewDoc, ODMSaveAs and
ODMSaveAsEx functions each have a lpszFormat parameter where a format
can be specified. The ODMSaveAs also has a callback, which uses a format
string. The ODM_CONTENTFORMAT attribute can be requested or set using
the ODMGetDocInfo and ODMSetDocInfo functions.

The ODMA 1.0 specification did not attempt to standardize the format names
used by DMS and application vendors. This was a significant limitation in some
cases. The DMS would not know in advance what type of file was being created
by the application. Also an application that saved an existing file back to the
DMS using a different format would have no standard format name to give to the
DMS. This model relied on both the DMS and the application being able to auto-
detect all file formats.

ODMA Version 2.0 8 September 19, 1997

ODMA 2.0 defines guidelines to standardize format names. This has become
necessary due to vendors’ desire to have applications and DMSs more tightly
integrated and because ODMA 2.0 introduces some new functions which require
standardization in order to work. The new ODMGetAlternateContent and
ODMSetAlternateContent functions require the DMS and application to have a
standard way to identify file content. A new document attribute called
ODM_ALTERNATE_RENDERINGS allows an application to find out if a DMS
can provide a document in other formats and make a choice of which to use.

ODMA has defined the following guidelines to standardize how a DMS or
application might specify a document’s content format:

1. MIME Content Type. If a file type does not have a MIME content type, then a
file extension must be used.

2. File Extension (a.k.a. File Type). If a file extension is used the first character
must be a dot. The file extension should be the one normally used to identify
the document on the platform where the client application is running. Some
platforms allow the file extension to contain more than three characters.
ODMA does not define a maximum file extension length.

3. File Extension plus other identifying information. This other information may
be useful in cases where a single file extension is used for different
variations or versions of the file type. In this format the first character must
be a dot, followed by the file extension, plus a single forward slash, plus a
string containing the additional information.

Examples:

application/msword
.doc
.doc/MS Word 95 Document
.doc/MS Word 97 Document

image/tiff
.TIF
.TIFF
.TIF/Tagged Image File Format
.TIF/Scanned TIFF

A DMS or application can use the Windows Registry or its own mapping
capability to convert a file extension to a MIME code or vice versa. Note that
some file extensions are used by more than one application, some file types
have multiple valid file extensions, and that some MIME content types are used
to define more than one file type within the same application. A DMS or
application may have use whatever format name is most precise.

ODMA Version 2.0 9 September 19, 1997

DMS or Native File System Dialogs - Which to Display First

ODMA imposes no rules on applications requiring them to always show the DMS
dialogs first in response to filing commands such as File Open and File Save As.
ODMA applications are encouraged to provide a user preference setting so the
user can designate if the application’s native file system dialog or the DMS’s
dialog is displayed first. Ideally the application may provide a push-button or
some other control in its native file system dialog box to allow the user to quickly
select the DMS dialog box.

If the application cannot provide one or more of the options described above
then they have no choice but to always display the DMS dialog box in response
to the File Open and File Save As commands. Each ODMA compliant DMS
must provide a way for the user to select the native file system from dialogs
displayed while processing the ODMSelectDoc, ODMSelectDocEx,
ODMNewDoc, ODMSaveAs and ODMSaveAsEx functions. The DMS returns
the ODM_E_APPSELECT status if the user elects to use the native file system.
When this status is returned the application can display their dialog box. If the
user wishes to return to the DMS dialog box they will have to cancel and re-do
the file command.

Character Sets

All strings passed to or returned from ODMA functions should be null-terminated
series of octets, in the standard character set of the system on where ODMA is
being used. So for example, 8859-1 would be used on English Windows, Shift-
JIS would be used on Japanese Windows, etc. The term "null-terminated" as
used in this specification means terminated by the character set's natural Null
character. For most character sets this means a single byte with the value 0x0.

If an application obtains an ODMA document ID on one platform and later uses it
on another platform, the application is responsible for translating the ID to the
character set being used on the second platform before using it there.

Application Interfaces

An ODMA-aware application can choose to communicate with the ODMA
Connection Manager either through a traditional, function-oriented API or
through Component Object Model (COM) interfaces. Prototypes and constants
used for the function-oriented API are included in the odma.h header file.

ODMA Version 2.0 10 September 19, 1997

Prototypes, constants, and interface definitions for the COM interface are
included in the odmacom.h header file.

After calling ODMRegisterApp, applications can obtain one or more COM
interfaces to ODMA through the ODMQueryInterface function. The
IODMDocMan interface provides an alternate entry point to most of the ODMA
functions documented below. Other functions are defined in the IODMDocMan2
and IODMQuery interfaces. These interfaces and their interface IDs are defined
in the odmacom.h header file.

Note that IODMDocMan::QueryInterface will only query the default DMS for the
calling application. The application must call ODMQueryInterface in order to
query other DMSs.

Query Syntax

The query syntax described here is used in the ODMQueryExecute function.

<query> :: select <returned_list> <search_criteria>

<returned_list> :: <returned_item>[, <returned_list>]

<returned_item> :: ODM_DOCID
:: ODM_NAME

<search_criteria> :: <search_clause>
:: <where_clause>
:: <search_clause> <where_clause>
:: <where_clause> <search_clause>

<search_clause> :: search document contains <expression>

<expressioin> :: (<expression>)
:: [not] (<expression>)
:: <term> [<operator> <expression>]

<term> :: ‘<word>’
:: [not] ‘<word>’

<operator> :: and
:: or

ODMA Version 2.0 11 September 19, 1997

<word> is a user supplied word. If there is a single quote (’) inside this word, it
needs to be represented with two consecutive single quotes
(’’).

<where_clause> :: where <condition_list>

<condition_list> :: <condition> [<operator> <condition_list>]

<condition> :: <attribute> <op> ‘<attribute_value>’

<attribute> :: ODM_FORMAT
:: ODM_NAME
:: ODM_AUTHOR
:: ODM_TYPE
:: ODM_DMS_DEFINED:<dms_attribute>
:: * Any other document attribute listed in Appendix A

<op> :: =
:: !=
:: <>
:: >
:: <
:: <=
:: >=

<dms_attribute> is a DMS specific attribute name.

<attribute_value> is a user supplied value for ODM_NAME, etc. If there is a
single quote (’) inside any of these names, it must be
represented with two consecutive single quotes (’’).

Query Examples

Example 1: select ODM_DOCID, ODM_NAME
where ODM_TYPE = ‘Memo’
search document contains ‘Internet’ and not ‘Intranet’

Example 2: select ODM_DOCID, ODM_NAME
where ODM_AUTHOR = ‘Mark Twain’ and ODM_TYPE = ‘Story’

Example 3: select ODM_DOCID, ODM_NAME
search document contains ‘Mary’’s Lamb’
where ODM_NAME = ‘Mary Has a Little Lamb’ and
ODM_TYPE = ‘Song’

ODMA Version 2.0 12 September 19, 1997

Example 4: select ODM_DOCID, ODM_NAME
search document contains (‘rabbit’ or ‘hare’) and not ‘bunny’
where ODM_NAME = ‘Wild Life’ and ODM_AUTHOR = ‘John Doe’
and ODM_TYPE = ‘Letter’

ODMA API

The following section describes each function in the ODMA API that a typical
application would use. The functions are listed in alphabetical order.

ODMA Version 2.0 13 September 19, 1997

ODMActivate

ODMSTATUS ODMActivate (ODMHANDLE handle, WORD action,
LPSTR lpszDocId)

This function causes the DMS to perform actions that do not require cooperation
from the calling application. Control is returned to the calling application after
the specified action has been completed, except where noted. A DMS is not
required to support all of these actions.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

action - in - One of the following action codes:

ODM_NONE - No specific action is requested. The DMS should
simply make itself visible and let the user select the action to
be performed.

ODM_DELETE - The DMS should delete the specified document.
Note that most DMSs will not allow a deletion to occur if the
document is currently in use.

ODM_SHOWATTRIBUTES - The DMS should display the
specified document's profile or attributes.

ODM_EDITATTRIBUTES - The DMS should display the specified
document's profile or attributes, and the user should be put
in edit mode. Note that some DMSs will not allow a
document's attributes to be edited while it is in use.

ODM_VIEWDOC - The DMS should display the specified
document in a viewer window. The DMS may return control
to the calling application before displaying the document.

ODM_OPENDOC - The DMS should open the specified document
in its native application. The DMS may return control to the
calling application before displaying the document. This
function is intended for use by applications other than the
document's native application (e-mail, workflow, annotation,
etc.). Applications should use ODMOpenDoc to access
their own documents. If this function fails, the calling

ODMA Version 2.0 14 September 19, 1997

application may wish to retry using the ODM_VIEWDOC
action code.

ODM_NEWDOC - The DMS should allow the user to create and
save a new document. Optionally the caller can specify a
template document in lpszDocId. If lpszDocId is Null the
DMS should allow the user to choose the file format of the
document to be created and the document template. In
most cases it is expected that the DMS will need to launch
an application to create the document. The DMS may return
before satisfying this call, in which case the calling
application will not get notification when the new document
has been created. The user is free to cancel this function.

ODM_CHECKOUT - The DMS should check-out/reserve the
document for the current user. The DMS can display
whatever UI it might use for document check-out. This
action allows the user to explicitly reserve a document in the
DMS in a way that is persistent across ODMA or DMS
sessions. ODMOpenDoc should be used to get the content
file. See ODMCloseDoc and ODMCloseDocEx for
recommendations on how to handle closing a document that
was explicitly reserved before it was opened.

ODM_CANCELCHECKOUT - The DMS should cancel a previous
checkout/reserve on the document, if it has been checked-
out by the current user. The DMS can display whatever UI it
might use for canceling a document check-out.

ODM_CHECKIN - The DMS should check-in/unreserve the
document if it’s checked-out by the current user. The DMS
can display whatever UI it might use for document check-in.
ODMSaveDoc or ODMSaveDocEx should already have
been used, if necessary, to save the content to the DMS.

ODM_SHOWHISTORY - The DMS should display the specified
document’s history (i.e. revisions, events, activities, etc.).

lpszDocId - in - A document ID specifying the document on which to
perform the requested action. This parameter may be Null if the action is
ODM_NONE or ODM_NEWDOC. If action is ODM_NEWDOC the
application can specify the document ID of a template document.

Return value:

ODMA Version 2.0 15 September 19, 1997

ODM_SUCCESS if successful.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_INUSE if the document is currently in use or checked-out by

another user on actions where this would preclude the
operation from completing correctly.

ODM_E_ACCESS if the user doesn’t have appropriate access rights
to perform the requested action (i.e. check-out or check-in the
document).

ODM_E_OFFLINE if the DMS cannot currently access the document
because the user client is off-line.

ODM_E_ARCHIVED if the DMS cannot currently supply the document
content because it has been archived.

ODM_E_CANCEL if the action was canceled by the user.
ODM_E_NOSUPPORT if action is not supported by the DMS.
ODM_E_ITEM if action is invalid or not supported by the DMS.
ODM_E_FAIL if the action could not be completed by the DMS.
ODM_W_NOACTION if action is ODM_CHECKOUT and the

document is already checked-out/reserved by the current user.
This status can also be returned if action is either
ODM_CANCELCHECKOUT or ODM_CHECKIN and the
document is not currently checked-out/reserved by any user.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 16 September 19, 1997

ODMCloseDoc

ODMSTATUS ODMCloseDoc(ODMHANDLE handle, LPSTR lpszDocId,
DWORD activeTime, DWORD pagesPrinted, LPVOID sessionData,
WORD dataLen)

An application that has opened a document by calling ODMOpenDoc must call
ODMCloseDoc when it is finished using the document. The application should
not call this function until after it has closed the document, because the DMS
may move the document or make it inaccessible as a result of this call. Note
that this function will not cause the document to be saved into the DMS's
persistent repository unless ODMSaveDoc has been called previously.

It is possible for a user to explicitly check-out/reserve a document using either
ODMActivate or a command provided by the DMS. If a document was already
reserved by the user before ODMOpenDoc was called, then when
ODMCloseDoc is called it is recommended that the DMS keep the document
reserved. The DMS should only check-in/unreserve the document in
ODMCloseDoc if it first displays a dialog box confirming this with the user.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc or ODMNewDoc. This document must have
been previously opened by a call to ODMOpenDoc.

activeTime - in - If the application tracks time spent editing the document
then it should pass the number of seconds here. Otherwise it should
pass 0xFFFFFFFF.

pagesPrinted - in - If the application tracks the number of pages printed
from this document during the current editing session; it should pass this
number here. Otherwise it should pass 0xFFFFFFFF.

sessionData - in - The application may pass other information regarding
the current editing session in this parameter. For example, an application
might pass the number of keystrokes that were entered. The calling
application is free to determine the format of this data, so DMSs that rely
on this information will have to coordinate with each application
supported. Null should be passed if the application has no meaningful
information to pass through this parameter.

ODMA Version 2.0 17 September 19, 1997

dataLen - in - The length of the data passed in the sessionData
parameter. Ignored if sessionData is Null.

Return value:

ODM_SUCCESS if successful.
ODM_E_NOOPEN if the document was not previously opened.
ODM_E_FILELOCKED if the DMS could not complete the function

because the temporary file provided in ODMOpenDoc is still
opened by the calling application.

ODM_E_FAIL if the DMS is unable to close the document for any
other reason.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 18 September 19, 1997

ODMCloseDocEx

ODMSTATUS ODMCloseDocEx(ODMHANDLE handle, LPSTR lpszDocId,
LPDWORD pdwFlags, DWORD activeTime, DWORD pagesPrinted,
LPVOID sessionData, WORD dataLen)

ODMCloseDocEx is the same as ODMCloseDoc except it has a pwdFlags
parameter. There is an ODM_SILENT flag to facilitate unattended document
processing. Some DMSs display a user interface when closing a document.
This flag allows the calling application to suppress this UI.

An application that has opened a document by calling ODMOpenDoc must call
ODMCloseDoc or ODMCloseDocEx when it is finished using the document.
The application should not call this function until after it has closed the
document, because the DMS may move the document or make it inaccessible as
a result of this call. Note that this function will not cause the document to be
saved into the DMS's persistent repository unless ODMSaveDoc or
ODMSaveDocEx has been called previously.

It is possible for a user to explicitly check-out/reserve a document using either
ODMActivate or a command provided by the DMS. If a document was already
reserved by the user before ODMOpenDoc was called, then when
ODMCloseDocEx is called it is recommended that the DMS keep the document
reserved. The DMS should only check-in/unreserve the document in
ODMCloseDocEx if the ODM_SILENT flag is not set and it first displays a
dialog box confirming this with the user.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. This
document must have been previously opened by a call to ODMOpenDoc.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, 0 or the following flag:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODMA 2.0 does not define any output flags at this time.

ODMA Version 2.0 19 September 19, 1997

activeTime - in - If the application tracks time spent editing the document
then it should pass the number of seconds here. Otherwise it should
pass 0xFFFFFFFF.

pagesPrinted - in - If the application tracks the number of pages printed
from this document during the current editing session; it should pass this
number here. Otherwise it should pass 0xFFFFFFFF.

sessionData - in - The application may pass other information regarding
the current editing session in this parameter. For example, an application
might pass the number of keystrokes that were entered. The calling
application is free to determine the format of this data, so DMSs that rely
on this information will have to coordinate with each application
supported. Null should be passed if the application has no meaningful
information to pass through this parameter.

dataLen - in - The length of the data passed in the sessionData
parameter. Ignored if sessionData is Null.

Return value:

ODM_SUCCESS if successful.
ODM_E_NOOPEN if the document was not previously opened.
ODM_E_USERINT if the ODM_SILENT flag was specified and the

DMS could not satisfy the call without user interaction.
ODM_E_FILELOCKED if the DMS could not complete the function

because the temporary file provided in ODMOpenDoc is still
opened by the calling application.

ODM_E_FAIL if the DMS is unable to close the document for any
other reason.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 20 September 19, 1997

ODMGetAlternateContent

ODMSTATUS ODMGetAlternateContent(ODMHANDLE handle, LPSTR
lpszDocId, LPDWORD pdwFlags, LPSTR lpszFormat, LPSTR lpszDocLocation)

This function causes the DMS to return an alternate content file for the specified
document. The format of the alternate content file should be one of the formats
returned by the ODM_ALTERNATE_RENDERINGS item in a previous call to
ODMGetDocInfo. The application is responsible for deleting the alternate
content file when it is finished using it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. The
specified document may or may not be open when this function is called.
This document ID refers to the main document for which an alternate
content file is being requested.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, zero (0) or the following flag:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODMA 2.0 does not define any output flags at this time.

lpszFormat - in - A null-terminated string containing the format name of
the alternate format requested. The Document Format Names section
has information on how file formats are identified in ODMA. Typically the
calling application would have first obtained the alternate renderings the
DMS has for the specified document then specified one in this parameter.
This is done by requesting the ODM_ALTERNATE_RENDERINGS
attribute in ODMGetDocInfo. However, the application is free to simply
specify the MIME Content Type or File Extension for the format it needs.
If the DMS cannot return the requested format, it will return the
ODM_E_NOSUPPORT status.

lpszDocLocation - in/out - A pointer to a buffer of at least
ODM_FILENAME_MAX bytes in length, into which the DMS will write a

ODMA Version 2.0 21 September 19, 1997

null-terminated string containing a full path and file name of the alternate
content file. If an error occurs then the contents of the buffer will be
undefined. It is the responsibility of the calling application, not the DMS,
to delete this file when it is finished with it.

Optionally the calling application can specify a file extension in this
parameter for the DMS to use in the file specification it returns. If
specified, the file extension should be preceded by a period. The DMS
may choose to ignore this information and return a file specification
containing a different file extension.

Return value:

ODM_SUCCESS if successful.
ODM_E_ACCESS if the user does not have access rights to the

requested alternate content file or the main document.
ODM_E_INUSE if the user is currently unable to access the alternate

content file because the main document is checked-out by
another user.

ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists.

ODM_E_OFFLINE if the DMS cannot currently access the document
because the user client is off-line.

ODM_E_ARCHIVED if the DMS cannot currently supply the document
content because it has been archived.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not make the specified document available without
user interaction.

ODM_E_INVARG if the value in flags is invalid.
ODM_E_REQARG if a required parameter isn’t specified (i.e.

lpszFormat or lpszDocLocation).
ODM_E_NOSUPPORT if the DMS does not support the function or it

cannot return the requested alternate content format for the
specified document.

ODM_E_FAIL if the DMS is unable to make the document accessible
for any other reason.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 22 September 19, 1997

ODMGetDMS

WORD ODMGetDMS(LPCSTR lpszAppId, LPSTR lpszDmsId)

This function provides an application a programmatic way to get its default DMS.
The DMS ID of the current DMS for the application will be returned. This can be
either the default DMS from the registry or a DMS previously set by the
application using ODMSetDMS.

Parameters:

lpszAppId - in - A pointer to a null-terminated string containing an
Application ID.

lpszDmsId - out - A pointer to a buffer to receive the DMS ID of the default
DMS. This buffer must be at least ODM_DMSID_MAX bytes in length. If
an error occurs the value in this buffer is undefined.

Returns value:

ODM_SUCCESS if successful.
ODM_E_NODMS if there is no default DMS registered.
ODM_E_REQARG if either parameter is not specified.

ODMA Version 2.0 23 September 19, 1997

ODMGetDMSCount

WORD ODMGetDMSCount()

This is an informational function. It will count the number of DMSs currently
registered on the system. This information can be used to determine the
minimum size for the buffer in a call to ODMGetDMSList.

Parameters: None.

Return value: The number of DMSs currently registered on the system.

ODMA Version 2.0 24 September 19, 1997

ODMGetDMSInfo

ODMSTATUS ODMGetDMSInfo(ODMHANDLE handle, LPSTR lpszDmsId,
LPWORD pwVerNo, LPDWORD pdwExtensions)

This function returns information to the application about the currently active
DMS. The application if free to only request the information it needs.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDmsId - out - If specified by the caller, this should be a pointer to a
buffer of at least ODM_DMSID_MAX bytes in length. A null-terminated ID
identifying the DMS is returned here. This is the same ID embedded in
document IDs returned by this DMS.

pwVerNo - out - If specified by the caller, this should be a pointer to a
variable to receive a version number. The version of the ODMA API
supported by this DMS is returned here.

pdwExtensions - out - If specified by the caller, this should be a pointer to
a variable to receive extension information. Indications of extensions to
the base ODMA API that are supported by this DMS are returned here. If
a DMS does not support any currently defined extensions, then 0 will be
returned. The DMS will return flag values for all the extensions it
supports. The currently defined ODMA extensions are:

ODM_EXT_WORKFLOW - The DMS supports the ODMA
Workflow Extensions.

ODM_EXT_QUERY - The DMS supports the Query Extensions
defined in ODMA 1.5.

Return value:

ODM_SUCCESS if successful.
ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 25 September 19, 1997

ODMGetDMSList

WORD ODMGetDMSList(LPSTR buffer, WORD buffer_size)

This function gets a list of the DMSs currently registered on the system.

Parameters:

buffer - out - A pointer to a buffer which will receive a list of DMSs. The
format of the list is a collection of Null terminated strings. The list is
terminated by an empty string (i.e. “<id#1>\0<id#2>\0\0”).

buffer_size - in - Size of buffer. It must be at least
ODMGetDMSCount() * ODM_DMSID_MAX + 1 bytes in length.

Return value: The number of DMSs returned in buffer.

ODMA Version 2.0 26 September 19, 1997

ODMGetDocInfo

ODMSTATUS ODMGetDocInfo(ODMHANDLE handle, LPSTR lpszDocId,
WORD item, LPSTR lpszData, WORD dataLen)

An application can use this function to obtain information about a document from
the DMS. It is recommended that the DMS not display any user interface while
processing this function.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. The
specified document may or may not be open when ODMGetDocInfo is
called.

item - in - A single Item Id.

Refer to Appendix A for a complete list of Item Ids for document
attributes which can be specified in this parameter.

ODM_DMS_DEFINED - Can be used for DMS specific attributes
not explicitly defined by ODMA. The lpszData parameter
contains a DMS-specific indication of the data to be
returned. Note that an application must know which DMS it
is talking to and must understand the data indications
supported by the DMS in order to use this item id.

lpszData - in/out - On input, ignored if item is anything other than
ODM_DMS_DEFINED. If item is ODM_DMS_DEFINED then lpszData
contains an indication of the data to be returned. It is recommended that
the DMS be able to recognize a null-terminated string containing one of
its known attribute names. On output, the requested data is returned in
the buffer pointed to by lpszData. The data is always null-terminated.

dataLen - in - The length of the output buffer pointed to by lpszData. If
the data to be returned is longer than dataLen it will be truncated. The
DMS must return ODM_E_TRUNCATED when the requested data cannot
be safely truncated; for example when an attribute containing a document
ID or URL is returned. In these cases the application should recall the
function supplying a larger buffer.

ODMA Version 2.0 27 September 19, 1997

Return value:

ODM_SUCCESS if successful.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_OFFLINE if the DMS cannot currently access the document

because the user client is off-line.
ODM_E_TRUNCATED if the application supplied buffer is too small to

hold data that cannot be safely truncated. A DMS cannot
truncate an ODM_URL attribute or any attribute containing an
ODMA document ID.

ODM_E_ITEM if item is invalid or unknown to this DMS.
ODM_E_NOSUPPORT if the DMS does not support the function or

does not support the specified document attribute.
ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 28 September 19, 1997

ODMGetDocRelation

ODMSTATUS ODMGetDocRelation(ODMHANDLE handle, LPSTR lpszDocId,
LPDWORD pdwFlags, LPSTR lpszLinkedId, LPSTR lpszFormat,
LPSTR lpszPreviousId)

An application can use this function to retrieve pointers to document versions
linked to a particular document ID. This function would be used typically as part
of retrieving a compound document. It could also be used when saving an
updated component document, for the user to verify which compound documents
will be impacted by any changes.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc or ODMNewDoc. The specified document
may or may not be open when ODMGetDocRelation is called.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, one or more of the following flags:

ODM_REL_PARENT - Return the lpszLinkedId that is a parent of
lpszDocId.

ODM_REL_CHILD - Return the lpszLinkedId that is a child of
lpszDocId.

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

Upon return one or more of the following flags may be set by the
DMS unless an error occurred:

ODM_REL_NOTORDERED - The default is that the DMS
maintains child links as an ordered list, and that it will use
lpszPreviousId to select the appropriate lpszLinkedId to
return. If it is returning them in no particular, logical,
meaningful sequence, the DMS will return this value to warn
the application. A DMS could maintain both ordered and
unordered lists, an example of the former being a book with

ODMA Version 2.0 29 September 19, 1997

separate chapters, while the latter might be a collection
such as attached to a workflow.

ODM_REL_FIXED - The relationship is frozen between the
particular document versions represented by lpszDocId and
lpszLinkedId. This may also be used to signify that the
application and/or the user want to retain control over
updating the link, rather than have the DMS do it.

ODM_REL_RELEASED - The link should be maintained to the
Current or Released version of the child document.
Released is available in some DMS to distinguish a version
that has been approved for release. If the DMS does not
distinguish between Released and Latest, then Latest is
used. The value is called Released and not Current, to
avoid confusion with the version that is already (currently)
linked.

ODM_REL_LATEST - The link should be maintained to the latest
version of the child document.

lpszLinkedId - out - A pointer to a buffer where the DMS will return the ID
of the next document version that is linked to lpszDocId. This buffer must
be at least ODM_DOCID_MAX bytes in length. If successful then a null-
terminated document ID will be returned here. Otherwise the contents of
the buffer will be undefined.

lpszFormat - in/out - This is an optional parameter. If specified it must be
a pointer to a buffer of at least ODM_FORMAT_MAX characters. This
buffer contains a null-terminated string naming the file format of the
rendition to be retrieved when the link is followed. Refer to the Document
Format Names section for information on how file formats are identified in
ODMA. This parameter allows the caller to identify the best format for
the intended use of the main document. The requested format may or
may not be the one established in ODMSetDocRelation and may or may
not be the primary editing format. For instance, a graphic may be saved
in several resolutions, one for on-line use and another for printing.

On input, this is a hint to the DMS of the preferred format of the child to be
retrieved. If the application does not provide a format it should set the
buffer in lpszFormat to a zero length string. In this case the DMS should
use the format established in ODMSetDocRelation or the primary format
of the document.

ODMA Version 2.0 30 September 19, 1997

On output, the DMS should write the format name of the rendition
returned. This may be the closest rendition format the DMS could find. If
the DMS does not record rendition formats when relating documents, then
it should return a zero length string in this buffer.

If this parameter is Null, then the DMS should use the format established
in ODMSetDocRelation or the primary format of the child document (the
one used in ODMOpenDoc).

lpszPreviousId - in - A null-terminated document ID. This is typically
returned as lpszLinkedId on a previous call to ODMGetDocRelation. By
making repeated calls to ODMGetDocRelation, the application obtains a
logically ordered list of document ID's that make up a compound
document. To get the first document in a list, provide a zero length, null-
terminated document ID. Null should be passed if the application has no
meaningful information to pass through this parameter.

Return value:

ODM_SUCCESS if successful.
ODM_E_NORELATION if the specified document has no related

parent or child.
ODM_E_NOMOREDATA if the end of the list has been passed.
ODM_E_DOCID if a document ID is invalid or refers to a document

that no longer exists.
ODM_E_USERINT if the ODM_SILENT flag was specified and the

DMS could not satisfy the call without user interaction.
ODM_E_NOSUPPORT if the DMS does not support the function.
ODM_E_INVARG if the value specified in pdwFlags was invalid. On

input either ODM_REL_PARENT or ODM_REL_CHILD must
be set.

ODM_E_REQARG if a required parameter (i.e. lpszLinkedId) is Null.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if the specified data was invalid or the DMS was unable

to accept it for other reasons.

ODMA Version 2.0 31 September 19, 1997

ODMGetLeadMoniker

ODMSTATUS ODMGetLeadMoniker(ODMHANDLE handle,
LPSTR lpszDocId, LPMONIKER FAR *ppMoniker)

Applications that are OLE 2 servers typically form composite monikers for their
OLE links by combining a file moniker representing the document with one or
more item monikers representing a particular section of the document. This
approach often does not work in environments where Document Management
Systems are in use because the filename that the application sees is usually just
temporary. This function lets the application obtain a leading moniker from the
DMS that can be used in place of the file moniker.

This function will only be available on platforms supporting OLE 2. This function
may not be supported by some DMSs; those DMSs will return ODM_E_FAIL. In
this case the application should go ahead and use the file moniker as though
ODMA were not present. Note that this function is prototyped in odmacom.h
instead of odma.h, so that non-OLE-aware applications do not have to #include
the OLE header files.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - An ODMA document ID.

ppMoniker - out - A leading moniker for the specified document ID will be
returned here if successful. Otherwise Null will be returned here.

Return value:

ODM_SUCCESS if successful.
ODM_E_FAIL if the DMS that created the specified document ID does

not support OLE moniker building.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_HANDLE if handle is invalid.

ODMA Version 2.0 32 September 19, 1997

ODMNewDoc

ODMSTATUS ODMNewDoc(ODMHANDLE handle, LPSTR lpszDocId, DWORD
dwFlags, LPSTR lpszFormat, LPSTR lpszDocLocation)

This function causes the DMS to create a new document profile and return the
document ID for the new document to the calling application. The DMS may
create a temporary or pending document profile; it may not have actually created
a document in its data store. If the DMS displays a dialog box for this function it
should be task/application modal.

The document ID returned by the DMS in ODMNewDoc provides a document
context for the application. This document ID must be used in subsequent
ODMA function calls which are needed to complete the process of saving a new
document into a DMS. If the user decides to cancel the operation or save the
document to the native file system, then the application should call
ODMCloseDoc or ODMCloseDocEx and throw the document ID away. The
document ID returned by ODMNewDoc may be temporary so the application
must be prepared for the possibility that the DMS will later override it in a call to
ODMSaveAs, ODMSaveAsEx or ODMSaveDoc or ODMSaveDocEx.

The calling sequence for creating a new document, which isn’t based on another
existing document, is as follows: ODMNewDoc, ODMSaveAs, ODMOpenDoc
then ODMSaveDoc. Finally the document must be closed with ODMCloseDoc.
The above sequence will likely involve user interaction with the DMS displaying
one or more dialog boxes.

It is possible for an application to create a new document without any user
interaction if the DMS supports it. To accomplish this the calling application
should set the ODM_SILENT flag and use the following call sequence:
ODMNewDoc, {ODMSetDocInfo}, ODMSaveAsEx, ODMOpenDoc,
ODMSaveDocEx and ODMCloseDocEx.

Optionally, if the application wishes to pre-set some document attributes in the
Save As dialog box it can call ODMSetDocInfo using the document ID from
ODMNewDoc. This should be done before calling ODMSaveAs or
ODMSaveAsEx. Example attributes the DMS might accept and perhaps show in
its Save As dialog are ODM_NAME, ODM_AUTHOR, ODM_KEYWORDS and
others. After ODMSaveAs is called, the application might wish to call
ODMGetDocInfo to see if the user changed the value of any document attribute
it is tracking.

Parameters:

ODMA Version 2.0 33 September 19, 1997

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - out - A pointer to a buffer where the DMS will return the ID of
the new document. This buffer must be at least ODM_DOCID_MAX bytes
in length. If successful then a null-terminated document ID will be
returned here. Otherwise the contents of the buffer will be undefined.

dwFlags - in - 0 or a combination of 1 or more of the following values:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

lpszFormat - in - A null-terminated string naming the format of the new
document's content. Refer to the Document Format Names section for
information on how file formats are identified in ODMA. Note that this
may be changed later via an ODMSaveAs call.

lpszDocLocation - in - Normally DMSs select the location for a new
document. But if the document already exists and is large or resides on
read-only storage then the calling application can use this parameter to
tell the DMS where the document is currently stored. This is a hint to the
DMS that the document should be left in this location. Note that some
DMSs may ignore this hint and move the document anyway. A DMS may
ignore this parameter. The calling application should not directly access
the document in this location following the call to ODMNewDoc; it should
use ODMOpenDoc to obtain a location for subsequent access to the
document. In most cases the application should pass Null in this
parameter to allow the DMS to determine the document's storage
location.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user cancels the new document creation.
ODM_E_FAIL if the DMS failed to create the new document.
ODM_E_USERINT if the ODM_SILENT flag was specified and the

DMS could not process the function without user interaction.
ODM_E_APPSELECT if the user indicated that he wants to select the

document's filename using the application's regular file
selection facilities rather than using the DMS. The application
should just display its regular selection dialog.

ODMA Version 2.0 34 September 19, 1997

ODM_E_OFFLINE if the DMS has no local data store and is off-line
from its server; generally the caller should treat this the same
as ODM_E_APPSELECT.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 35 September 19, 1997

ODMOpenDoc

ODMSTATUS ODMOpenDoc(ODMHANDLE handle, DWORD flags, LPSTR
lpszDocId, LPSTR lpszDocLocation)

This function causes the DMS to make a document available to the application.
It performs any necessary pre-processing (mapping network drives, checking
security, etc.) and then returns to the application a temporary filename that can
be used to access the document during the current session. Note that this
function does not open the document file; it merely makes the file temporarily
available to the calling application. The application can then open, read, write
and close the file as needed.

If ODM_MODIFYMODE is requested, the DMS may refuse the request if the
user has view-only rights (ODM_E_ACCESS) or if the document is currently
checked-out (ODM_E_INUSE) to another user. It is recommended that the
application retry the request specifying ODM_VIEWMODE in both cases so that
the user can at least view the document and possibly save changes to a new
document.

Applications are encouraged to give the user the same level of feedback if a
DMS based document is opened for read-only access as they would for a
document based in the platform’s native file system.

When the application is finished using a file which was opened with either
ODM_MODIFYMODE or ODM_VIEWMODE it must call ODMCloseDoc or
ODMCloseDocEx. When an application is finished using a file that was
obtained with the ODM_REFCOPY option it does not have to call
ODMCloseDoc or ODMCloseDocEx, however, it must delete the temporary file.

If an application has opened a document in ODM_VIEWMODE and wishes to
switch to ODM_MODIFYMODE, it must first call ODMCloseDoc or
ODMCloseDocEx then call ODMOpenDoc requesting ODM_MODIFYMODE.
The same is true if the application wishes to switch from ODM_MODIFYMODE to
ODM_VIEWMODE. The ODM_E_ALREADYOPENED error status is returned
by the DMS if the application attempts to re-open a document that it has already
opened in either of these two modes.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

flags - in - One or more of the following flags:

ODMA Version 2.0 36 September 19, 1997

ODM_MODIFYMODE - The DMS should make the document
available in a modifiable mode. This mode is assumed if
ODM_VIEWMODE or ODM_REFCOPY is not explicitly
requested.

ODM_VIEWMODE - The DMS should make the document
available in a view-only mode. Any changes made to the
document will not be transferred back to the document
repository. If ODM_VIEWMODE and ODM_MODIFYMODE
are both specified in the same call the ODM_E_INVARG
error will be returned.

ODM_REFCOPY - The DMS should make a read-only reference
copy of the document available to the calling application.
The DMS must return a different filespec in lpszDocLocation
each time this function is called. It is invalid to specify
ODM_REFCOPY with either ODM_VIEWMODE or
ODM_MODIFYMODE. The calling application must delete
any reference copy file obtained using this option and it
should not call ODMCloseDoc or ODMCloseDocEx.

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

lpszDocId - in - A document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc.

lpszDocLocation - out - A pointer to a buffer of at least
ODM_FILENAME_MAX bytes in length. The DMS will store in this buffer
a null-terminated string indicating where the caller can access the
document during the current session. Typically, this will be the full
path/file name of the specified document, but some document formats
may dictate another type of location such as a directory name. If an error
occurs then the contents of the buffer will be undefined.

Return value:

ODM_SUCCESS if successful.
ODM_E_ACCESS if the user does not have the access rights

requested (for example, modify mode was requested but the
user only has view rights to the document).

ODM_E_INUSE if the user is currently unable to access the document
in modify mode because it is checked-out by another user. This

ODMA Version 2.0 37 September 19, 1997

differs from ODM_E_ACCESS in that it is expected that the
user might be able to access the document in the specified
mode at some point in the future.

ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists.

ODM_E_OFFLINE if the DMS cannot currently access the document
because the user client is off-line.

ODM_E_ARCHIVED if the DMS cannot currently supply the document
content because it has been archived.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not make the specified document available without
user interaction.

ODM_E_INVARG if both ODM_OPENMODE and ODM_VIEWMODE
have been specified or if either of those modes was specified
with ODM_REFCOPY.

ODM_E_ALREADYOPENED if the application attempts to reopen a
document with ODM_MODIFYMODE or ODM_VIEWMODE that
it has already opened with either of these modes. See below
for one possible exception.

ODM_E_FAIL if the DMS is unable to make the document accessible
for any other reason.

ODM_E_HANDLE if handle was invalid.

If the application attempts to open a document for ODM_VIEWMODE that it
already has opened for ODM_VIEWMODE, then the DMS may either return the
ODM_E_ALREADYOPNED error status or ODM_SUCCESS along with the
previously returned temporary file specification. The DMS should not return
ODM_SUCCESS in this case unless it is maintaining a reference count of the
number of times this application has opened the document for
ODM_VIEWMODE access. The application must call ODMCloseDoc or
ODMCloseDocEx once for every time the document was successfully opened.
On the last close call the DMS will delete the temporary file.

ODMA Version 2.0 38 September 19, 1997

ODMQueryCapability

ODMSTATUS ODMQueryCapability(ODMHANDLE handle,
LPCSTR lpszDmsId, DWORD function, DWORD item, DWORD flags);

This function is used by a client application to determine if a DMS supports a
given ODMA function, or a specific action code in ODMActivate or a specific
event code in ODMSetDocEvent. It can also be used to determine if the DMS
supports getting or setting a given document attribute using ODMGetDocInfo or
ODMSetDocInfo.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDmsId - in - A pointer to a null terminated string containing the DMS
ID of the DMS to query. A DMS ID can be obtained by calling
ODMGetDMSList, ODMGetDMS or ODMGetDMSInfo. If this parameter
is set to Null, then the default DMS is queried (the one opened with
ODMRegisterApp).

function - in - One of the following function ids:

ODM_QC_ACTIVATE ODM_QC_QUERYEXECUTE
ODM_QC_CLOSEDOC ODM_QC_QUERYGETRESULTS
ODM_QC_CLOSEDOCEX ODM_QC_SAVEAS
ODM_QC_GETALTERNATECONTENT ODM_QC_SAVEASEX
ODM_QC_GETDMSINFO ODM_QC_SAVEDOC
ODM_QC_GETDOCINFO ODM_QC_SAVEDOCEX
ODM_QC_GETDOCRELATION ODM_QC_SELECTDOC
ODM_QC_GETLEADMONIKER ODM_QC_SELECTDOCEX
ODM_QC_NEWDOC ODM_QC_SETALTERNATECONTENT
ODM_QC_OPENDOC ODM_QC_SETDOCEVENT
ODM_QC_QUERYCLOSE ODM_QC_SETDOCRELATION

item - in - Optional item, action code or event, depending on the function
being queried. Specify a value of 0 to query if the DMS supports the
function. If ODM_QC_ACTIVATE is specified in function, then an action
value can be specified in this parameter. If ODM_QC_GETDOCINFO or
ODM_QC_SETDOCINFO is specified in function, then an item code can
be specified in this parameter. If function is ODM_QC_SETDOCEVENT
then an event code can be specified in item. See the individual functions
for the constants that can be used in the item parameter.

flags - in - Many ODMA functions have a flags parameter. This parameter
can be used to test if a DMS supports specified input or output flags for a

ODMA Version 2.0 39 September 19, 1997

function. For example an application might test to see if a DMS can
support unattended operations by specifying the ODM_SILENT flag here.
It is ignored if the function specified in the function parameter does not
have a flags parameter.

Return value:

ODM_SUCCESS if the DMS supports the specified function or the
specified item/action/event.

ODM_E_NODMS if a DMS ID was specified in lpszDmsId which the
ODMA Connection Manager could not find.

ODM_E_NOSUPPORT if the DMS does not support the function
specified in function.

ODM_E_ITEM if the DMS does not support the item, action code or
event code specified in item.

ODM_E_USERINT if ODM_SILENT was specified in flags and the
DMS cannot satisfy the function specified in function without
user interaction.

ODM_E_REQARG if nothing was specified in the function parameter.
ODM_E_INVARG if flags was invalid for the function specified in

function.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if the DMS was unable to process the function for other

reasons.

ODMA Version 2.0 40 September 19, 1997

ODMQueryClose

ODMSTATUS ODMQueryClose(ODMHANDLE handle, LPCSTR queryId)

This function is used by a client application to indicate that it has finished using
the query and that the involved DMS(s) should release any resources and/or
memory for the result set.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

queryId - in - A pointer to a null-terminated string containing a query id
returned by a previous call to ODMQueryExecute.

Return value:

ODM_SUCCESS on success, where upon the queryId is no longer
valid.

ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if one or more input values are invalid.

ODMA Version 2.0 41 September 19, 1997

ODMQueryExecute

ODMSTATUS ODMQueryExecute(ODMHANDLE handle, LPCSTR lpszQuery,
DWORD flags, LPCSTR lpszDMSList, LPSTR queryId)

This function will pass the lpszQuery along to each DMS as specified by the
flags parameter. It will return a query ID that can be used in subsequent calls to
ODMQueryGetResults and ODMQueryClose. If this function is successful, the
calling application must eventually call ODMQueryClose to release this query.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszQuery - in - The query to be processed by one or more DMSs. Refer
to the Query Syntax section for the exact syntax specification.

flags - in - One of the following:

ODM_ALL - All DMS providers on this workstation.
ODM_SPECIFIC - A set of specific DMSs to run query against.

lpszDMSList - in - Valid only if value of flags is ODM_SPECIFIC. A buffer
containing a list of DMSs. The format for the list is a collection of null-
terminated strings. The list is terminated by an empty string (i.e.
“<id#1>\0<id#2>\0\0”).

queryId - out - An id to be used for search identification to subsequent
calls. This is the query ID a client application uses to communicate with
Connection Manager, which in turn maps the ID to a DMS-specific query
ID. For the case of multiple DMS’s, this ID is mapped to multiple DMS-
specific query IDs. Such mapping is handled by Connection Manager
and is transparent to the client application. The buffer size for queryId
should be at least ODM_QUERYID_MAX bytes.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user canceled the query.
ODM_E_PARTIALSUCCESS if one or more DMSs returned a

successful status and one or more DMSs return a failure.
ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 42 September 19, 1997

ODM_E_FAIL if invalid data was sent in, or no DMS was specified or
all DMSs failed to process the query.

ODMA Version 2.0 43 September 19, 1997

ODMQueryGetResults

ODMSTATUS ODMQueryGetResults(ODMHANDLE handle, LPCSTR queryId,
LPSTR lpszDocId, LPSTR lpszDocName, WORD docNameLen,
LPWORD pwDocCount)

This function will fetch pwDocCount number of documents at a time.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

queryId - in - A pointer to a null-terminated string containing a query id
returned by a previous call to ODMQueryExecute.

lpszDocId - out - A pointer to a buffer to receive document Ids for
documents that satisfied the search referenced in queryId. This buffer
needs to be at least (ODM_DOCID_MAX * pwDocCount) + 1 bytes in
length.

lpszDocName - out - A pointer to a buffer to receive ODM_NAME attribute
values for documents that satisfied the search referenced in queryId.
This buffer needs to be at least (docNameLen * pwDocCount) + 1 bytes in
length.

docNameLen - in - The length of a document name including the null-
terminator.

pwDocCount - in/out - A pointer to a variable used to pass a document
count. On input, pwDocCount contains the number of documents
expected by the client application. On output, pwDocCount contains the
actual number of documents returned by this function.

Return value:

ODM_SUCCESS if no error and there are more rows available.
ODM_E_NOMOREDATA if there is no more data. The contents of

lpszDocId, lpszDocName and docCount are undefined.
ODM_E_REQARG if a required parameter is not specified.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if an error occurs.

ODMA Version 2.0 44 September 19, 1997

ODMQueryInterface

HRESULT ODMQueryInterface(ODMHANDLE handle, LPSTR lpszDocId,
REFIID riid, LPVOID FAR *ppvObj)

An application can use this function to get a COM interface from an ODMA
provider. All ODMA providers support the IODMDocMan interface and some
support IODMDocMan2 and IODMQuery. Individual DMSs may support other
interfaces as well. Note that this function is prototyped in odmacom.h instead of
odma.h, so that non-COM-aware applications do not have to #include the
header files that define interface IDs.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - An ODMA document ID or Null. If Null then the
application's default DMS is queried for the interface. Otherwise the DMS
that created this document ID is queried.

riid - in - The interface to be obtained from the DMS.

ppvObj - out - If the requested interface is supported by the DMS then it is
returned here. Otherwise ppvObj is set to Null.

Return value:

S_OK if successful.
E_INVALIDARG if handle or lpszDocId is invalid.
E_NOINTERFACE if the requested interface is not supported by the

DMS.
E_ACCESSDENIED if the DMS refuses the calling application.
E_FAIL if the DMS fails to initialize itself or fails for any other reason.

ODMA Version 2.0 45 September 19, 1997

ODMRegisterApp

ODMSTATUS ODMRegisterApp(ODMHANDLE FAR *pHandle, WORD version,
LPSTR lpszAppId, DWORD dwEnvData, LPVOID pReserved)

ODMRegisterApp registers an application with the appropriate Document
Management System (DMS) and returns a session handle that can be used in
calls to other ODMA functions.

An application normally calls this function before calling any other ODMA
function. Some functions such as ODMGetDMSCount, ODMGetDMSList,
ODMGetDMS and ODMSetDMS can be called before ODMRegisterApp.
These are used by applications that wish to control which DMS they will access
when ODMRegisterApp is called.

A task may call ODMRegisterApp more than once. Each call will return a
different handle, each of which must be released with ODMUnRegisterApp.

Parameters:

pHandle - out - If successful, a session handle is returned here that can
be used in calls to other ODMA functions. If the registration fails then 0 is
returned here.

version - in - Specifies the version of the API required by the application.
100 should be passed to indicate version 1.0, 150 for version 1.5, 200 for
version 2.0, etc. The macro ODM_API_VERSION can be used to get the
current version number at compile time. All versions of the ODMA API
will be downward compatible, so this should be interpreted as the
minimum version number that the calling application expects the DMS to
support. If the DMS does not support the specified version or a higher
version then it should return an error.

lpszAppId - in - A unique identifier for the application. The maximum
length for this string is ODM_APPID_MAX, which is 16 characters
including the terminating Null. The application ID cannot begin with a
digit. It is recommended that a Windows application use the application
class name it uses in the registry as its ODMA Application ID, but this is
not required.

dwEnvData - in - Environment data. On Windows platforms this is a
Window handle for a parent window in the calling application. The DMS
may use this window handle as the parent window for any dialogs or other
windows it displays in response to ODMA calls. This handle must remain

ODMA Version 2.0 46 September 19, 1997

valid for the duration of the ODMA session (i.e. until ODMUnRegisterApp
is called).

pReserved - in - Reserved for future use. Must be set to Null.

Return value:

ODM_SUCCESS if successful.
ODM_E_NODMS if no Document Management System has been

registered for the calling application.
ODM_E_CANTINIT if a DMS is registered for the calling application,

but it fails to initialize itself.
ODM_E_VERSION if the DMS does not support the requested version

of the API.
ODM_E_REFUSED if the DMS has been configured to refuse ODMA

access for the calling application. This is not considered an
error condition. If this status is returned, the application should
simply act as if ODMA is not on the system.

ODMA Version 2.0 47 September 19, 1997

ODMSaveAs

ODMSTATUS ODMSaveAs(ODMHANDLE handle, LPSTR lpszDocId,
LPSTR lpszNewDocId, LPSTR lpszFormat,
ODMSAVEASCALLBACK pcbCallBack, LPVOID pInstanceData)

This function causes the DMS to return a new document ID for a document that
is based on an existing document. An application would typically call this
function in response to the user selecting a File Save As menu option.
ODMSaveAs causes the DMS to display options to the user for selecting the
destination for the new document. This might be an entirely new document or a
new version of the current document. Any dialog box displayed by the DMS
should be task/application modal.

Often the application will want to present additional options to the user at this
point such as different file formats or encrypting the document. This is
accomplished via the pcbCallBack parameter. ODMA implementers should
provide a method for users to access this function if desired. For example, the
DMS may show a dialog that includes an Options button. If the user clicks this
button, the DMS would call the application's callback function which would give
the application a chance to display other save options.

Note that following a successful call to ODMSaveAs the calling application may
have two different document IDs to work with. This is different than the situation
with ODMSaveDoc where the new ID replaces the old one in the current
session. The state of the document specified by the old ID remains the same
after the call. The document specified by the new ID will be in the closed state
following the call. A typical sequence of operations an application might follow
in response to the user selecting File | Save As would be:

1. Application passes the currently open document's ID to ODMSaveAs. If an
empty string is returned for the new ID, then the application should call
ODMSaveDoc with the current document ID to indicate to the DMS that
document should be saved in the document repository. If a new ID for the
document is returned then continue with the steps below.

2. Application calls ODMOpenDoc on the new ID. This returns a new filename
for the document.

3. Application saves the document to the new filename and then calls
ODMSaveDoc on the new ID to indicate to the DMS that the new document
should be saved in the document repository.

4. Application calls ODMCloseDoc on the old ID.
5. The application can now forget about the old ID and use the new ID for all

subsequent operations on the file. When the current session is completed it
will call ODMCloseDoc on the new ID.

ODMA Version 2.0 48 September 19, 1997

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. This
document may or may not be open at the time that ODMSaveAs is called.
Its open status will remain the same after this call.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the
ID of the new document. This buffer must be at least ODM_DOCID_MAX
bytes in length. If successful then a null-terminated document ID will be
returned here, unless the document is saved with the current ID. In this
case the first byte of this buffer will be set to Null and 0 will be returned.
Otherwise the contents of the buffer will be undefined.

lpszFormat - in - A null-terminated string naming the format in which the
application expects to save the document. This may be passed as a
parameter to the pcbCallBack function which may return a different
format. Refer to the Document Format Names section for information on
how file formats are identified in ODMA.

pcbCallBack - in - A pointer to a callback function that can be used by the
application to make other saving options available to the user. Any UI
presented by this callback function should be task modal. The function
should return a pointer to a format string which may or may not be the
same as the original format string. This parameter may be null if the
application does not wish to present any options. Under Microsoft
Windows the procedure-instance address of the callback function
(obtained from MakeProcInstance) should be used. The callback
function's interface is as follows:

LPSTR __cdecl SaveAsCallBack(DWORD dwEnvData, LPSTR
lpszFormat, LPVOID pInstanceData)

dwEnvData - in - Environment data. On Windows platforms this is
a Window handle for a parent window to associate with the
callback function's display. If the DMS displayed a dialog in
response to the ODMSaveAs call then it should pass the window
handle for that dialog. Otherwise it should pass the window handle
obtained from the ODMRegisterApp call. The callback function
may use this window handle as the parent window for any dialogs
or other windows it displays.

ODMA Version 2.0 49 September 19, 1997

lpszFormat - The currently selected document format. The DMS
should allocate at least ODM_FORMAT_MAX for this buffer. If the
application handling the callback wishes to update this DMS buffer
and return its pointer back as the value of the callback, then it
should take care to not overwrite the buffer’s length.

pInstanceData - The instance data passed from the calling
application.

pInstanceData - in - A pointer to caller context information that will be
passed to the pcbCallBack function. This data will not be accessed by
ODMA.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user cancels the creation of the new

document.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_APPSELECT if the user selected to save the document as a

non-profiled document.
ODM_E_OFFLINE if the DMS has no local data store and is off-line

from its server; generally the caller should treat this the same
as ODM_E_APPSELECT.

ODM_E_FAIL if the DMS is unable to display its Save As dialog box
or create the new document.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 50 September 19, 1997

ODMSaveAsEx

ODMSTATUS ODMSaveAsEx(ODMHANDLE handle, LPSTR lpszDocId,
LPSTR lpszNewDocId, LPSTR lpszFormat,
ODMSAVEASCALLBACK pcbCallBack, LPVOID pInstanceData,
LPDWORD pdwFlags)

The ODMSaveAsEx function extends ODMSaveAs by adding a pdwFlags
parameter to allow for unattended document creation. It also can be called
without first calling ODMNewDoc.

This function causes the DMS to return a new document ID for a document that
is based on an existing document. An application would typically call this
function in response to the user selecting a File Save As menu option.
ODMSaveAsEx causes the DMS to display options to the user for selecting the
destination for the new document. This might be an entirely new document or a
new version of the current document. Any dialog box displayed by the DMS
should be task/application modal.

Often the application will want to present additional options to the user at this
point such as different file formats or encrypting the document. This is
accomplished via the pcbCallBack parameter. ODMA implementers should
provide a method for users to access this function if desired. For example, the
DMS may show a dialog that includes an Options button. If the user clicks this
button, the DMS would call the application's callback function which would give
the application a chance to display other save options.

Note that following a successful call to ODMSaveAsEx the calling application
may have two different document IDs to work with. This is different than the
situation with ODMSaveDoc or ODMSaveDocEx where the new ID replaces the
old one in the current session. The state of the document specified by the old ID
remains the same after the call. The document specified by the new ID will be in
the closed state following the call. A typical sequence of operations an
application might follow in response to the user selecting File | Save As would
be:

1. Application passes the currently open document's ID to ODMSaveAsEx. If
an empty string is returned for the new ID, then the application should call
ODMSaveDoc or ODMSaveDocEx with the current document ID to indicate
to the DMS that document should be saved in the document repository. If a
new ID for the document is returned then continue with the steps below.

2. Application calls ODMOpenDoc on the new ID. This returns a new filename
for the document.

ODMA Version 2.0 51 September 19, 1997

3. Application saves the document to the new filename and then calls
ODMSaveDoc or ODMSaveDocEx on the new ID to indicate to the DMS that
the new document should be saved in the document repository.

4. Application calls ODMCloseDoc or ODMCloseDocEx on the old ID.
5. The application can now forget about the old ID and use the new ID for all

subsequent operations on the file. When the current session is completed it
will call ODMCloseDoc or ODMCloseDocEx on the new ID.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. This
document may or may not be open at the time that ODMSaveAsEx is
called. Its open status will remain the same after this call.

This lpszDocId parameter can optionally be set to NULL if the calling
application did not first call ODMNewDoc. In this case, the DMS will
return a document ID in the buffer specified in lpszNewDocId.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the
ID of the new document. This buffer must be at least ODM_DOCID_MAX
bytes in length. If successful then a null-terminated document ID will be
returned here, unless the document is saved with the current ID. In this
case the first byte of this buffer will be set to Null and 0 will be returned.
Otherwise the contents of the buffer will be undefined.

lpszFormat - in - A null-terminated string naming the format in which the
application expects to save the document. This may be passed as a
parameter to the pcbCallBack function which may return a different
format. Refer to the Document Format Names section for information on
how file formats are identified in ODMA.

pcbCallBack - in - A pointer to a callback function that can be used by the
application to make other saving options available to the user. Any UI
presented by this callback function should be task modal. The function
should return a pointer to a format string which may or may not be the
same as the original format string. This parameter may be null if the
application does not wish to present any options. Under Microsoft
Windows the procedure-instance address of the callback function
(obtained from MakeProcInstance) should be used. The callback
function's interface is as follows:

ODMA Version 2.0 52 September 19, 1997

LPSTR __cdecl SaveAsCallBack(DWORD dwEnvData, LPSTR
lpszFormat, LPVOID pInstanceData)

dwEnvData - in - Environment data. On Windows platforms this is
a Window handle for a parent window to associate with the
callback function's display. If the DMS displayed a dialog in
response to the ODMSaveAsEx call then it should pass the
window handle for that dialog. Otherwise it should pass the
window handle obtained from the ODMRegisterApp call. The
callback function may use this window handle as the parent
window for any dialogs or other windows it displays.

lpszFormat - The currently selected document format. The DMS
should allocate at least ODM_FORMAT_MAX for this buffer. If the
application handling the callback wishes to update this DMS buffer
and return its pointer back as the value of the callback, then it
should take care to not overwrite the buffer’s length.

pInstanceData - The instance data passed from the calling
application.

pInstanceData - in - A pointer to caller context information that will be
passed to the pcbCallBack function. This data will not be accessed by
ODMA.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, 0 or the following flag:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned. If the
DMS has enough information to create a new document
then it should return ODM_SUCCESS.

ODMA 2.0 does not define any output flags at this time.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user cancels the creation of the new

document.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_APPSELECT if the user selected to save the document as a

non-profiled document.

ODMA Version 2.0 53 September 19, 1997

ODM_E_OFFLINE if the DMS has no local data store and is off-line
from its server; generally the caller should treat this the same
as ODM_E_APPSELECT.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS does not support document creation without user
interaction or the DMS does not have enough information to
create the document without user interaction.

ODM_E_FAIL if the DMS is unable to display its Save As dialog box
or create the new document.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 54 September 19, 1997

ODMSaveDoc

ODMSTATUS ODMSaveDoc(ODMHANDLE handle, LPSTR lpszDocId,
LPSTR lpszNewDocId)

This function tells the DMS that the document should be saved to the document
repository. An application would typically call this function after saving changes
to the temporary file returned by ODMOpenDoc. A new document ID is returned
to the application which should be used for all subsequent operations on the
document. This ID replaces the previous document ID in the current session.
The new ID may or may not be the same as the original ID. It will usually be the
same unless the DMS saved the document as a new version or as a new
document. If the new ID is different from the previous ID then the previous ID
cannot be used subsequently without doing an ODMOpenDoc on it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc. This document must have been
previously opened in modify mode by a call to ODMOpenDoc.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the
new ID of the document. This buffer must be at least ODM_DOCID_MAX
bytes in length. If successful then a null-terminated document ID will be
returned here. Otherwise the contents of the buffer will be undefined.

Return value:

ODM_SUCCESS if successful.
ODM_E_NOOPEN if the document wasn’t previously opened with

ODMOpenDoc.
ODM_E_OPENMODE if the document was not previously opened in

modifiable mode.
ODM_E_FAIL if the DMS is unable to save the document to the

document repository.
ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 55 September 19, 1997

ODMSaveDocEx

ODMSTATUS ODMSaveDocEx(ODMHANDLE handle, LPSTR lpszDocId,
LPSTR lpszNewDocId, LPDWORD pdwFlags)

This function tells the DMS that the document should be saved to the document
repository. ODMSaveDocEx is basically the same as ODMSaveDoc, except it
has a pwdFlags parameter. This provides the application with more control
during the document creation or save process. There is an ODM_SILENT flag
that facilitates unattended document creation or saving. Some DMSs display a
user interface when saving a document (i.e. to have the user specify revision or
version information). This flag allows the calling application to suppress this UI
if necessary or to influence it, if the DMS should allow that.

An application would typically call this function after saving changes to the
temporary file returned by ODMOpenDoc. A new document ID is returned to the
application which should be used for all subsequent operations on the
document. This ID replaces the previous document ID in the current session.
The new ID may or may not be the same as the original ID. It will usually be the
same unless the DMS saved the document as a new version or as a new
document. If the new ID is different from the previous ID then the previous ID
cannot be used subsequently without doing an ODMOpenDoc on it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A document ID. This is typically obtained by a call to
ODMSelectDoc or ODMNewDoc. This document must have been
previously opened in modify mode by a call to ODMOpenDoc.

lpszNewDocId - out - A pointer to a buffer where the DMS will return the
new ID of the document. This buffer must be at least ODM_DOCID_MAX
bytes in length. If successful then a null-terminated document ID will be
returned here. Otherwise the contents of the buffer will be undefined.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, 0 or one or more of the following flags:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODMA Version 2.0 56 September 19, 1997

ODM_VERSION_SAME - If saving an existing document the DMS
should keep the version information the same. If the DMS
does not support versioning this flag should be ignored.

ODM_VERSION_MAJOR - If saving an existing document the
DMS should increment the major version number. If the
DMS displays a dialog this flag is an indication of how the
dialog might be initialized. If the DMS does not support
versioning this flag should be ignored.

ODM_VERSION_MINOR - If saving an existing document the DMS
should increment the minor version number. A DMS that
doesn’t support minor versions should just treat this like a
major version. If the DMS displays a dialog this flag is an
indication of how the dialog might be initialized.

Upon return, one of the following flags must be set by the DMS
unless an error occurred:

ODM_VERSION_SAME - The DMS either kept the version the
same or it does not support versioning.

ODM_VERSION_CHANGED – The DMS changed the version
number, possibly with user interaction.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the DMS displayed a dialog and the user

canceled the save operation.
ODM_E_NOOPEN if the document wasn’t previously opened with

ODMOpenDoc.
ODM_E_OPENMODE if the document was not previously opened in

modifiable mode.
ODM_E_USERINT if the ODM_SILENT flag was specified and the

DMS could not save the document without user interaction or
the DMS does not have enough information to create a new
document without user interaction.

ODM_E_INVARG if the value in pdwFlags was invalid. More than one
of the ODM_VERSION* flags was set.

ODM_E_OFFLINE if the DMS has no local data store and is off-line
from its server.

ODM_E_FAIL if the DMS is unable to save the document to the
document repository.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 57 September 19, 1997

ODMSelectDoc

ODMSTATUS ODMSelectDoc(ODMHANDLE handle, LPSTR lpszDocId,
LPDWORD pdwFlags)

This function causes the DMS to return a document ID representing a document
that has been selected for some action. Typically the DMS will display
searching and other dialogs that allow the user to interactively select a
document from among those managed by the DMS. An application would
typically call this function whenever the user needs to select a document to be
opened or imported. Any dialog box displayed by the DMS should be
task/application modal.

If the user elects to open a document in ODM_VIEWMODE, then the application
should open the document with ODMOpenDoc specifying ODM_VIEWMODE. If
a user selects ODM_MODIFYMODE, the application is free to open the
document with either the ODM_VIEWMODE or ODM_REFCOPY options if it
only needs read-only access to it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - out - A pointer to a buffer where the DMS will return the ID of
the document selected by the user. This buffer must be at least
ODM_DOCID_MAX bytes in length. If successful then a null-terminated
document ID will be returned here. Otherwise the contents of the buffer
will be undefined.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, 0 or one or more of the following flags:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODM_VIEWMODE - On input this is a hint to the DMS that the
application will only be opening the selected document for
read-only access. Support for this input flag is optional for
the DMS. A DMS that supports this might modify its
document selection user interface appropriately and set only
the ODM_VIEWMODE flag on output.

ODMA Version 2.0 58 September 19, 1997

Upon return, one of the following flags will be set unless an error
occurred:

ODM_MODIFYMODE - The user indicated that the selected
document should be opened in a modifiable mode.

ODM_VIEWMODE - The user indicated that the selected document
should be opened in a view-only mode.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user does not make a selection.
ODM_E_APPSELECT if the user indicated that he wants to make a

selection using the application's regular file selection facilities
rather than using the DMS. The application should just display
its regular selection dialog.

ODM_E_OTHERAPP if the user selected a document and the DMS
allowed the user to open it with another application or its native
application; generally the caller should treat this the same as
ODM_E_CANCEL.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not select a document without user interaction.

ODM_E_OFFLINE if the DMS has no local data store and is off-line
from its server; generally the caller should treat this the same
as ODM_E_APPSELECT.

ODM_E_FAIL if the DMS is unable to select a document for any other
reason.

ODM_E_HANDLE if handle was invalid.

In the case that ODM_E_APPSELECT is returned and a document is opened
through the application's regular file selection facilities, the following behaviors
are recommended:

1. File | Save and File | Close should be handled as though the DMS were not
present.

2. File | Save As should he handled through ODMA (specifically through the
ODMSaveAs function). This will allow documents to be imported into the
DMS. The exception to this is if the application allows the user to select a
DMS from within its native file system Save As dialog.

ODMA Version 2.0 59 September 19, 1997

ODMSelectDocEx

ODMSTATUS ODMSelectDocEx(ODMHANDLE handle, LPSTR lpszDocIds,
LPWORD pwDocIdsLen, LPWORD pwDocCount, LPDWORD pdwFlags,
LPSTR lpszFormatFilter)

ODMSelectDocEx extends ODMSelectDoc. This function causes the DMS to
return one or more document IDs representing documents that have been
selected for some action. An application may call this function if it allows the
user to open multiple documents in one command. Typically the DMS will
display searching and other dialogs that allow the user to interactively select
documents from among those managed by the DMS. If a DMS does not support
multiple selection, then it is free to limit the user to selecting only one document.
Any dialog box displayed by the DMS should be task/application modal.

The ODMSelectDocEx function has an lpszFormatFilter parameter which will
allow an application to specify to a DMS what file types the user should select.
This can provide for closer integration between the application and the DMS.

If the user elects to open a document in ODM_VIEWMODE, then the application
should open the document with ODMOpenDoc specifying ODM_VIEWMODE. If
a user selects ODM_MODIFYMODE, the application is free to open the
document with either the ODM_VIEWMODE or ODM_REFCOPY options if it
only needs read-only access to it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocIds - out - A pointer to a buffer where the DMS will return the IDs
of the documents selected by the user. If successful then a series of null-
terminated document IDs will be returned here, with the last ID followed
by an extra Null terminator. Otherwise the contents of the buffer will be
undefined. This buffer must be at least ODM_DOCID_MAX *
pwDocCount + 1 bytes in length.

pwDocIdsLen - in/out - On input this parameter is a pointer to a variable
that specifies the length of the buffer pointed to by lpszDocIds. If the call
fails because the buffer is not big enough, this variable is updated by the
DMS to contain the required buffer size.

pwDocCount - in/out - On input this parameter is a pointer to a variable
that specifies the maximum number of documents the calling application

ODMA Version 2.0 60 September 19, 1997

can handle in the buffer specified in lpszDocIds. The DMS should not
allow the user to select more than this number of documents. On output
the DMS must update this value to contain the actual number of
documents returned in lpszDocIds.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, 0 or one or more of the following flags:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODM_VIEWMODE - On input this is a hint to the DMS that the
application will only be opening the selected document for
read-only access. Support for this input flag is optional for
the DMS. A DMS that supports this might modify its
document selection user interface appropriately and set only
the ODM_VIEWMODE flag on output.

ODM_TEMPLATES - The DMS should, if possible, only show the
user document templates. This option allows the application
to access document templates which the DMS maintains for
work-groups or the current user.

Upon return, one of the following flags will be set unless an error
occurred:

ODM_MODIFYMODE - The user indicated that the selected
document(s) should be opened in a modifiable mode. If the
DMS user interface allows the user to select some
documents for modify access and others for view-only
access, then it is recommended that this flag be set.

ODM_VIEWMODE - The user indicated that the selected
document(s) should be opened in a view-only mode.

lpszFormatFilter - in - If specified, a long pointer to a buffer containing a
sequence of one or more null-terminated format names. The last
sequence must be terminated with two null characters. The information in
lpszFormatFilter is a hint to DMS of which file types or templates the
application would like the user to select. The DMS may use this format
list as is, augment it with other formats, or ignore it altogether. The user
is free to select any document type, so the calling application must be
prepared for the possibility that the user will select a file format that isn’t
specified in the lpszFormatFilter parameter. Refer to the Document

ODMA Version 2.0 61 September 19, 1997

Format Names section for information on how file formats are identified in
ODMA.

Return value:

ODM_SUCCESS if successful.
ODM_E_CANCEL if the user does not make a selection.
ODM_E_APPSELECT if the user indicated that he wants to make a

selection using the application's regular file selection facilities
rather than using the DMS. The application should just display
its regular selection dialog.

ODM_E_OTHERAPP if the user selected a document and the DMS
allowed the user to open it with another application or its native
application; generally the caller should treat this the same as
ODM_E_CANCEL.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not select a document without user interaction.

ODM_E_NOSUPPORT if the DMS does not support the function.
ODM_E_INVARG if the variables pointed to by pwDocCount or

pwDocIdsLen have value of 0.
ODM_E_REQARG if a required parameter is not specified (i.e.

lpszDocIds, pwDocIdsLen or pwDocCount.
ODM_E_TRUNCATED if the buffer specified in lpszDocIds is too small

to hold the selected document Ids. When this error occurs the
pwDocIdsLen variable contains the required buffer size.

ODM_E_OFFLINE if the DMS has no local data store and is off-line
from its server; generally the caller should treat this the same
as ODM_E_APPSELECT.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 62 September 19, 1997

ODMSetAlternateContent

ODMSTATUS ODMSetAlternateContent(ODMHANDLE handle,
LPSTR lpszDocId, LPDWORD pdwFlags, LPSTR lpszFormat,
LPSTR lpszDocLocation)

This function allows an application to create or update an alternate content file
for the specified document in the DMS. The application can either provide the
alternate content file or it can instruct the DMS to create or update the content
file itself. The format of the alternate content file is specified in the
ODMSetAlternateContent function call. The DMS may or may not accept the
specified alternate content file. The application is responsible for deleting the
alternate content file when it is finished using it.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc, ODMSelectDocEx or ODMNewDoc. The
specified document may or may not be open when this function is called.
This document ID refers to the main document for which an alternate
content file is being created or updated.

pdwFlags - in/out - A pointer to a variable containing flags used on both
input and output. On input, zero (0) or one or more of following flags:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODM_ALT_DELETE - The DMS should delete the specified
alternate content file if the user has the appropriate access
rights.

ODMA 2.0 does not define any output flags at this time.

lpszFormat - in - A null-terminated string containing the format name of
the alternate format file which is being created or updated. Refer to the
Document Format Names section for information on how file formats are
identified in ODMA. If the DMS cannot accept the specified format it will
return the ODM_E_NOSUPPORT status.

ODMA Version 2.0 63 September 19, 1997

lpszDocLocation - in - A pointer to a null-terminated string containing the
file specification of the alternate content file. The file referenced in this
parameter should be in the format indicated in the lpszFormat parameter.
This parameter may be set to Null if the calling application wants the DMS
to create the alternate rendition file itself. If the DMS cannot create or
update the alternate content file then it will return ODM_E_NOSUPPORT.
It is the responsibility of the calling application, not the DMS, to delete this
file when it is finished with it.

Return value:

ODM_SUCCESS if successful.
ODM_E_ACCESS if the user does not have the appropriate access

rights to create, update or delete an alternate content file for the
main document.

ODM_E_INUSE if the user is currently unable to create, update or
delete the alternate content file because the main document is
checked-out by another user.

ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists.

ODM_E_OFFLINE if the DMS cannot currently access the document
because the user client is off-line.

ODM_E_ARCHIVED if the DMS cannot currently update the alternate
content because the main document has been archived.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not make the specified document available without
user interaction.

ODM_E_INVARG if lpszFormat is Null.
ODM_E_NOSUPPORT if the DMS does not support the function or it

cannot accept or generate the requested alternate content
format for the specified document.

ODM_E_FAIL if the DMS is unable to complete the function for any
other reason.

ODM_E_HANDLE if handle was invalid.

ODMA Version 2.0 64 September 19, 1997

ODMSetDMS

ODMSTATUS ODMSetDMS(LPCSTR lpszAppId, LPCSTR lpszDmsId)

This function provides an application a programmatic way to set its default DMS.
ODMSetDMS does not change any default DMS settings in the registry. The
DMS ID set using this function will take effect the next time the application calls
ODMRegisterApp. It will not alter the default DMS in any existing session the
application has already established with ODMRegisterApp.

Parameters:

lpszAppId - in - A pointer to a null-terminated string containing an
Application ID.

lpszDmsId - in - A pointer to a null-terminated string containing a DMS ID.
This is the DMS the application will be connected to when it calls
ODMRegisterApp. If this parameter is set to Null the Connection
Manager will set the application to use to the default DMS in the registry.

Return value:

ODM_SUCCESS if successful.
ODM_E_NODMS if the DMS specified in lpszDmsId is not valid.
ODM_E_REQARG if the lpszAppId parameter is Null.

ODMA Version 2.0 65 September 19, 1997

ODMSetDocEvent

ODMSTATUS ODMSetDocEvent(ODMHANDLE handle, LPSTR lpszDocId,
DWORD flags, DWORD event, LPVOID lpData, DWORD dwDataLen,
LPSTR lpszComment)

An application can use this function to pass event information about the
document to the DMS. Events like printing, sending, posting can be sent by the
application to the DMS. The DMS may or may not accept the event information.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc. The specified document may or may not be
open when ODMSetDocEvent is called.

flags - in - 0 or a combination of 1 or more of the following values:

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

event - in - One of the following:

ODM_EVENT_PRINTED - The document was printed.
ODM_EVENT_POSTED - The document was posted into a

discussion group.
ODM_EVENT_SENT - The document was mailed.
ODM_EVENT_FAXED - The document was faxed.
ODM_EVENT_ROUTED - The document was routed using a

workflow system.
ODM_EVENT_COPIED - The document was copied or imported

into another DMS or application.
ODM_EVENT_CONVERTED - The document was used as source

to a format conversion or scanning (i.e. OCR) operation that
resulted in the creation of a new document or another
version or rendition of an existing document.

ODM_EVENT_DMSDEFINED - The lpData parameter contains a
DMS-specific indication of the data being passed as well as
the data itself. Note that an application must know which
DMS it is talking to and must understand the data

ODMA Version 2.0 66 September 19, 1997

indications supported by that DMS in order to use this event
name.

lpData - in - The application may pass other information regarding the
event in this parameter. The calling application and the DMS will have to
coordinate on the format of this information. Null should be passed if the
application has no meaningful information to pass through this parameter.

dwDataLen - in - The length of the data passed in the lpData parameter.
Ignored if lpData is Null.

lpszComment - in - An optional, null-terminated, string containing either a
user supplied or application generated comment. Set this parameter to
Null if a comment isn’t specified.

Return value:

ODM_SUCCESS if successful.
ODM_E_DOCID if the document ID is invalid or refers to a document

that no longer exists.
ODM_E_OFFLINE if the DMS cannot currently process the event for

the document because the user client is off-line.
ODM_E_ITEM if event is invalid or not supported by the DMS.
ODM_E_NOSUPPORT if the DMS does not support the function.
ODM_E_USERINT if the ODM_SILENT flag was specified and the

DMS could not process the call without user interaction.
ODM_E_REQARG if lpData is specified and dwDataLen is 0.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if the DMS was unable to process the function for other

reasons.

ODMA Version 2.0 67 September 19, 1997

ODMSetDocInfo

ODMSTATUS ODMSetDocInfo(ODMHANDLE handle, LPSTR lpszDocId,
WORD item, LPSTR lpszData)

An application can use this function to pass information about the document to
the DMS. The DMS may or may not accept the information; most DMSs validate
attributes like document types and authors against predefined tables.

It is recommended that the DMS not display any user interface while processing
this function.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc or ODMNewDoc. The specified document
may or may not be open when ODMSetDocInfo is called.

item - in - A single Item Id.

Refer to Appendix A for a complete list of Item Ids for document
attributes which can be specified in this parameter.

ODM_DMS_DEFINED - Can be used for DMS specific attributes
not explicitly defined by ODMA. The lpszData parameter
contains a DMS-specific indication of the data being passed
as well as the data itself. Note that an application must
know which DMS it is talking to and must understand the
data indications supported by the DMS in order to use this
item id.

lpszData - in - Pointer to the data being passed to the DMS. Must be null-
terminated. If item is ODM_DMS_DEFINED then the value in this
parameter must contain both an indication of the attribute to set and the
data value. It is recommended that the DMS be able to recognize a null-
terminated string containing one of its known attribute names, followed by
an equal sign delimiter character, followed by the data value.

Return value:

ODM_SUCCESS if successful.

ODMA Version 2.0 68 September 19, 1997

ODM_E_ACCESS if the user does not have the appropriate access
rights to set the specified document attribute.

ODM_E_DOCID if the document ID is invalid or refers to a document
that no longer exists.

ODM_E_OFFLINE if the DMS cannot currently access the document
because the user client is off-line.

ODM_E_ITEM if item is invalid or unknown to this DMS.
ODM_E_NOSUPPORT if the DMS does not support the function or

does not support setting the specified document attribute.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if the specified data was invalid or the DMS was unable

to accept it for other reasons.

ODMA Version 2.0 69 September 19, 1997

ODMSetDocRelation

ODMSTATUS ODMSetDocRelation(ODMHANDLE handle, LPSTR lpszDocId,
LPDWORD pdwFlags, LPSTR lpszLinkedId, LPSTR lpszFormat,
LPSTR lpszPreviousId)

An application can use this function to maintain relationship and hierarchy
information in the DMS about a compound document structure that it is
manipulating external to the DMS. This function would typically be used as part
of saving a new or updated version of the master document, or when the user
requests the application to review and update the version that has been linked
to.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

lpszDocId - in - A null-terminated document ID. This is typically obtained
by a call to ODMSelectDoc or ODMNewDoc. The specified document
may or may not be open when ODMSetDocRelation is called.

pdwFlags - in/out - A pointer to variable containing flags used on both
input and output. On input, one or more of the following flags:

ODM_REL_PARENT - Create a link between the documents
represented in lpszDocId and lpszLinkedId with lpszDocId as
the parent. This flag cannot be used in combination with
ODM_REL_CHILD or ODM_REL_NONE.

ODM_REL_CHILD - Create a link between the documents
represented in lpszDocId and lpszLinkedId with lpszDocId as
the child. This flag cannot be used in combination with
ODM_REL_PARENT or ODM_REL_NONE.

ODM_REL_NONE - If a relationship exists between the documents
represented by lpszDocId and lpszLinkedId then delete it.
This flag cannot be used in combination with
ODM_REL_PARENT or ODM_REL_CHILD.

ODM_REL_FIXED - The relationship is frozen between the
particular document versions represented by lpszDocId and
lpszLinkedId. This may also be used to signify that the

ODMA Version 2.0 70 September 19, 1997

application and/or the user want to retain control over
updating the link, rather than have the DMS do it.

ODM_REL_RELEASED - The link should be maintained to the
Current or Released version of the child document.
Released is available in some DMS to distinguish a version
that has been approved for release. If the DMS does not
distinguish between Released and Latest, then Latest is
used. The value is called Released and not Current, to
avoid confusion with the version that is already (currently)
linked.

ODM_REL_LATEST - The link should be maintained to the latest
version of the child document.

ODM_SILENT - The DMS should not require user interaction while
satisfying the call. If the call cannot be satisfied without
user interaction then an error should be returned.

ODMA 2.0 does not define any output flags at this time.

lpszLinkedId - in - A null-terminated document ID. This is typically
obtained by a call to ODMSelectDoc, ODMNewDoc, ODMSaveAs,
ODMSaveDoc, ODMGetDocRelation or ODMGetDocInfo. The specified
document may or may not be open when ODMSetDocRelation is called.

lpszFormat - in/out - This is an optional parameter. If specified it must be
a pointer to a buffer of at least ODM_FORMAT_MAX characters. This
buffer contains a null-terminated string naming the file format of the
rendition to be retrieved when the link is followed. Refer to the Document
Format Names section for information on how file formats are identified in
ODMA. This parameter allows the caller to identify the best format for
the intended use of the main document. For instance, a graphic may be
saved in several resolutions, one for on-line use and another for printing.

On input, this is a hint to the DMS of the preferred format of the child to be
linked to. If the application does not provide a format it should set the
buffer in lpszFormat to a zero length string. In this case the DMS should
use the primary format of the document.

On output, the DMS should write the format name of the rendition it used.
This may be the closest rendition format the DMS could find. If the DMS
does not record rendition formats when relating documents, then it should
return a zero length string in this buffer.

ODMA Version 2.0 71 September 19, 1997

If this parameter is Null, then the DMS should use the primary format of
the child document (the one used in ODMOpenDoc).

lpszPreviousId - in - A null-terminated document ID. When adding child
documents, if the DMS maintains positional information in a logically
ordered list of linked documents, then the application is requesting the
DMS to add lpszLinkedId after lpszPreviousId and re-link whatever was
the "next Id" now to lpszLinkedId. To add lpszLinkedDocId as the first
document in a list, provide a zero length, null-terminated document ID.
Null should be passed if the application has no meaningful information to
pass through this parameter, or to add lpszLinkedDocId as the last
document in the list.

Return value:

ODM_SUCCESS if successful.
ODM_W_NOACTION if the link already existed and was configured in

the requested manner.
ODM_E_NORELATION if the application requests deletion of a

relationship that does not exist.
ODM_E_ACCESS if the user does not have the appropriate access

rights to create, update or delete this document relationship.
ODM_E_INUSE if the user is currently unable to create, update or

delete this document relationship because one or more of the
related documents is checked-out by another user.

ODM_E_DOCID if a document ID is invalid or refers to a document
that no longer exists.

ODM_E_USERINT if the ODM_SILENT flag was specified and the
DMS could not satisfy the call without user interaction.

ODM_E_NOSUPPORT if the DMS does not support the function.
ODM_E_INVARG if the value specified in flags was invalid.
ODM_E_REQARG if lpszDocId or lpszLinkedId is not specified.
ODM_E_HANDLE if handle was invalid.
ODM_E_FAIL if the specified data was invalid or the DMS was unable

to accept it for other reasons.

ODMA Version 2.0 72 September 19, 1997

ODMUnRegisterApp

void ODMUnRegisterApp(ODMHANDLE handle)

An application that previously registered itself with a DMS via ODMRegisterApp
should call this function when it is finished using the DMS. This would typically
be done when the application is shutting down. After this call returns, the DMS
session handle is no longer valid and cannot be used for subsequent calls to
ODMA functions.

Parameters:

handle - in - A handle obtained by a previous ODMRegisterApp call.

Return value:

None.

ODMA Version 2.0 73 September 19, 1997

DMS Interface

A DMS interfaces with ODMA through a function called ODMGetODMInterface
and through three COM interfaces; IODMDocMan, IODMQuery and
IODMDocMan2. When an application calls the ODMA connection manager's
ODMRegisterApp function, the connection manager calls the appropriate
DMS's ODMGetODMInterface function to establish a connection with the DMS.

The IODMDocMan interface implements all of the basic document management
functionality defined by the ODMA 1.0 specification. The IODMQuery interface
implements the query extension of the ODMA 1.5 specification. The
IODMDocMan2 interface implements the extended document management
functionality defined in the ODMA 2.0 specification. The methods of these
interfaces each correspond directly with a function from the ODMA API section
of this document. (For example, the SelectDoc method of the IODMDocMan
interface corresponds to the ODMSelectDoc function.) With only one exception,
the functionality of each method is completely detailed by the description of its
corresponding ODMA API function. For that reason, this section of the
document only provides a list of each method with its prototype and no further
details. (The one exception is the QueryExecute method of the IODMQuery
interface. Additional details, only important to the DMS’s implementation of this
method, are provided below.)

ODMGetODMInterface
HRESULT ODMGetODMInterface(REFIID riid, LPVOID FAR *ppvObj,
LPUNKNOWN pUnkOuter, LPVOID pReserved, LPSTR lpszAppId,
DWORD dwEnvData)

The ODMA connection manager calls this function to get an interface from a
DMS. This function is not available to ODMA-aware applications. The DMS
returns its status using OLE HRESULT codes which the Connection Manager
then maps to ODMA status codes.

Parameters:

riid - in - ID of the interface being requested. This will typically be
IID_IODMDocMan, which all ODMA DMS providers must support, or other
ODMA interfaces. The Connection Manager may also pass through calls
for other interfaces from the client.

ODMA Version 2.0 74 September 19, 1997

ppvObj - out - The requested interface should be returned here. If the
DMS cannot return the requested interface, ppvObj should be set to Null.

pUnkOuter - in - The controlling IUnknown interface for the aggregate
object. ODMA providers must support aggregation.

pReserved - in - Reserved for future use. It must always be set to Null.

lpszAppId - in - The ID of the calling application. See ODMRegisterApp.

dwEnvData - in - Environment specific data. On Windows platforms this
will be a window handle from the calling application. See
ODMRegisterApp.

Return value:

S_OK if successful.
E_NOINTERFACE if the requested interface is not supported.
E_ACCESSDENIED if the DMS refuses the application specified in

lpszAppId. The Connection Manager will return
ODM_E_REFUSED to the calling application.

E_FAIL if the DMS fails to initialize itself. The Connection Manager
will return ODM_E_CANTINIT to the calling application.

E_ODM_VERSION if the DMS does not support the requested version
of the API.

IODMDocMan Interface

SelectDoc
STDMETHOD_(ODMSTATUS, SelectDoc) (THIS_ LPSTR lpszDocId,
LPDWORD pdwFlags) PURE;

OpenDoc
STDMETHOD_(ODMSTATUS, OpenDoc) (THIS_ DWORD flags,
LPSTR lpszDocId, LPSTR lpszDocLocation) PURE;

SaveDoc
STDMETHOD_(ODMSTATUS, SaveDoc) (THIS_ LPSTR lpszDocId,
LPSTR lpszNewDocId) PURE;

CloseDoc
STDMETHOD_(ODMSTATUS, CloseDoc) (THIS_ LPSTR lpszDocId,

ODMA Version 2.0 75 September 19, 1997

DWORD activeTime, DWORD pagesPrinted, LPVOID sessionData,
WORD dataLen) PURE;

NewDoc
STDMETHOD_(ODMSTATUS, NewDoc) (THIS_ LPSTR lpszDocId,
DWORD dwFlags, LPSTR lpszFormat, LPSTR lpszDocLocation) PURE;

SaveAs
STDMETHOD_(ODMSTATUS, SaveAs) (THIS_ LPSTR lpszDocId,
LPSTR lpszNewDocId, LPSTR lpszFormat,
ODMSAVEASCALLBACK pcbCallBack, LPVOID pInstanceData) PURE;

Activate
STDMETHOD_(ODMSTATUS, Activate) (THIS_ WORD action,
LPSTR lpszDocId) PURE;

GetDocInfo
STDMETHOD_(ODMSTATUS, GetDocInfo) (THIS_ LPSTR lpszDocId,
WORD item, LPSTR lpszData, WORD dataLen) PURE;

SetDocInfo
STDMETHOD_(ODMSTATUS, SetDocInfo) (THIS_ LPSTR lpszDocId,
WORD item, LPSTR lpszData) PURE;

GetDMSInfo
STDMETHOD_(ODMSTATUS, GetDMSInfo) (THIS_ LPSTR lpszDmsId,
LPWORD pwVerNo, LPDWORD pdwExtensions) PURE;

GetLeadMoniker
STDMETHOD_(ODMSTATUS, GetLeadMoniker) (THIS_ LPSTR lpszDocId,
LPMONIKER FAR *ppMoniker) PURE;

IODMQuery Interface

QueryExecute
STDMETHOD_(ODMSTATUS, QueryExecute) (THIS_ LPCSTR lpszQuery,
LPSTR dmsQueryId) PURE;

Additional Notes: Upon success, the string returned in dmsQueryId
should be of the form: “::ODMA\DM_ID\DMS_SPECIFIC_QUERY_ID>”.
Note that this query ID is not necessarily the one returned to the client
application. Note also that multiple query IDs from different DMSs will be

ODMA Version 2.0 76 September 19, 1997

mapped to the same query ID for a single query call from the client
application. The dmsQueryId string may be up to ODM_DOCID_MAX
bytes in length.

The return value of ODM_E_PARTIALSUCCESS is a valid return value
for ODMQueryExecute but is not a valid return value for this method.

QueryGetResults
STDMETHOD_(ODMSTATUS, QueryGetResults) (THIS_ LPCSTR queryId,
LPSTR lpszDocId, LPSTR lpszDocName, WORD docNameLen,
LPWORD pwDocCount) PURE;

QueryClose
STDMETHOD_(ODMSTATUS, QueryClose)(THIS_ LPCSTR dmsQueryId)
PURE;

IODMDocMan2 Interface

CloseDocEx
STDMETHOD_(ODMSTATUS, CloseDocEx) (THIS_ LPSTR lpszDocId,
LPDWORD pdwFlags, DWORD activeTime, DWORD pagesPrinted,
LPVOID sessionData, WORD dataLen) PURE;

SaveAsEx
STDMETHOD_(ODMSTATUS, SaveAsEx) (THIS_ LPSTR lpszDocId,
LPSTR lpszNewDocId, LPSTR lpszFormat,
ODMSAVEASCALLBACK pcbCallBack, LPVOID pInstanceData,
LPDWORD pdwFlags) PURE;

SaveDocEx
STDMETHOD_(ODMSTATUS, SaveDocEx) (THIS_ LPSTR lpszDocId,
LPSTR lpszNewDocId, LPDWORD pdwFlags) PURE;

SelectDocEx
STDMETHOD_(ODMSTATUS, SelectDocEx) (THIS_ LPSTR lpszDocIds,
LPWORD pwDocIdsLen, LPWORD pwDocCount, LPDWORD pdwFlags,
LPSTR lpszFormatFilter) PURE;

QueryCapability
STDMETHOD_(ODMSTATUS, QueryCapability) (THIS_
LPCSTR lpszDmsId, DWORD function, DWORD item, DWORD flags) PURE;

ODMA Version 2.0 77 September 19, 1997

SetDocEvent
STDMETHOD_(ODMSTATUS SetDocEvent) (THIS_ LPSTR lpszDocId,
DWORD flags, DWORD event, LPVOID lpData, DWORD dwDataLen,
LPSTR lpszComment) PURE;

GetAlternateContent
STDMETHOD_(ODMSTATUS GetAlternateContent) (THIS_
LPSTR lpszDocId, LPDWORD pdwFlags, LPSTR lpszFormat,
LPSTR lpszDocLocation) PURE;

SetAlternateContent
STDMETHOD_(ODMSTATUS SetAlternateContent) (THIS_
LPSTR lpszDocId, LPDWORD pdwFlags, LPSTR lpszFormat,
LPSTR lpszDocLocation) PURE;

GetDocRelation
STDMETHOD_(ODMSTATUS GetDocRelation) (THIS_
LPSTR lpszDocId, LPDWORD pdwFlags, LPSTR lpszLinkedId,
LPSTR lpszFormat, LPSTR lpszPreviousId) PURE;

SetDocRelation
STDMETHOD_(ODMSTATUS SetDocRelation) (THIS_
LPSTR lpszDocId, LPDWORD pdwFlags, LPSTR lpszLinkedId,
LPSTR lpszFormat, LPSTR lpszPreviousId) PURE;

ODMA Version 2.0 78 September 19, 1997

Binding to the API

Windows 3.x, Windows 95 and Windows NT

The ODMA connection manager, ODMA.DLL (Windows 3.x) or ODMA32.DLL
(Windows 95 and NT), and a corresponding link library, ODMA.LIB (Windows
3.x) or ODMA32.LIB (Windows 95 and NT), will be made freely available to any
application vendor wishing to use them. Applications can choose either of the
methods described below to bind to ODMA:

1. Link to ODMA.LIB/ODMA32.LIB. Applications choosing this approach will
need to install a copy of ODMA.DLL/ODMA32.DLL into the Windows
system directory at the time the application is installed unless a newer
copy of ODMA.DLL/ODMA32.DLL already resides there. At startup time
the application can call ODMRegisterApp to determine whether or not an
ODMA provider is present for the calling application.

2. Dynamically load ODMA.DLL/ODMA32.DLL at startup time with a call to
LoadLibrary. With this approach the application has to call
GetProcAddress to get a pointer to each ODMA function it will call, but the
application does not have to do anything related to ODMA at installation
time. If ODMA.DLL/ODMA32.DLL doesn't exist or if ODMRegisterApp
returns ODM_E_NODMS then the application knows that no ODMA
provider is present for the calling application.

There is currently no thunk layer that exists to allow a 32-bit application and a
16-bit DMS, or vice versa, to interact with each other.

Installing a DMS

Windows 3.x, Windows 95 and Windows NT

The ODMA connection manager, ODMA.DLL for Windows 3.x and ODMA32.DLL
for Windows NT and Windows 95, will be provided to all DMS vendors that want
to support the ODMA specification. These DLLs will serve as a common entry
point for applications that wish to call ODMA functions. Its implementation of
ODMRegisterApp will figure out which DMS is registered for default use by the
calling application. It will then load the appropriate DMS's DLL and pass
through the function call. All other ODMA function calls that do not include a
document ID will be passed to this default DMS.

ODMA Version 2.0 79 September 19, 1997

When an ODMA call is made that includes a document ID, the ODMA
connection manager will determine which DMS created the ID. If that DMS has
not been initialized yet by the calling application, the connection manager will
call the provider's ODMGetODMInterface function and will then pass through
the current ODMA function call.

As part of its installation, a DMS should check whether a copy of ODMA.DLL
and/or ODMA32.DLL already exists in the Windows System directory. (On
Windows NT the ODMA32.DLL belongs in the System32 directory.) If the DLLs
do not exist or if the DMS has newer versions then it should copy its version of
ODMA.DLL and/or ODMA32.DLL to the Windows System directory. As of
ODMA 2.0, the Connection Manager DLLs will contain version resource
information. Next the DMS should register with the ODMA connection manager
by adding one or more keys to the registration database.

Each DMS must add a subkey to the root level ODMA key. This subkey should
be named the same as the DMS's DMS ID, and the subkey's value should
specify the location of the DLL containing the DMS's ODMA entry points. For
example, suppose a DMS with a DMS ID of DDD implemented its ODMA entry
points in H:\ABC\XYZ.DLL. It would add the following key and value to the
registration database under the HKEY_CLASSES_ROOT key:

ODMA\DDD = H:\ABC\XYZ.DLL for Windows 3.x
ODMA32\DDD = H:\ABC\XYZ.DLL for Win32 (i.e. WinNT & Windows 95)

The DMS ID is limited to 8 characters and is often cryptic. The DMS must add a
FullName subkey under its DMS ID subkey which provides the full name of the
DMS. The DMS is free to include any information necessary in the FullName
(i.e. vendor name, version and platform). For example, our fictional DMS with
the DDD DMS ID would define FullName like this:

ODMA\DDD\FullName = “Dynamic Document Depot V1.0 for Windows”
ODMA32\DDD\FullName = “Dynamic Document Depot V1.0 for Windows”

Applications should never display a DMS ID in a user interface. These DMS IDs
can be obtained using ODMGetDMSList or directly reading the registration
database. Applications should look up the FullName of the DMS and display
that instead.

If the DMS wanted to serve as the default ODMA provider to be used with all
ODMA-aware applications that were not registered with a specific DMS, it would
add the DEFAULT subkey to its DMS ID key as shown below:

ODMA\DDD\DEFAULT for Windows 3.x
ODMA32\DDD\DEFAULT for Win32 (i.e. Windows NT and Windows 95)

ODMA Version 2.0 80 September 19, 1997

If the DMS wanted to specifically register itself as the ODMA provider for one or
more applications, it would also add a subkey to the relevant applications' root
level keys. Note that this is only necessary if a different DMS is registered as
the default ODMA provider. Each time an application calls ODMRegisterApp,
the connection manager looks in the registration database for a root-level key
that matches the specified application ID. If it finds such a key then it looks
under it for a subkey called ODMA. The value of this key is the DMS ID of the
specifically registered DMS. If the application ID key is not found or if the
subkey ODMA or ODMA32 does not exist under it, the connection manager
looks at the subkeys of the root-level key ODMA or ODMA32 for a default ODMA
implementation.

For example, suppose a document management system with a DMS ID of DDD
wanted to support only one particular application that used QQQ as its
application ID. It would add the following key and value to the registration
database in addition to the ODMA subkey described above:

QQQ\ODMA = DDD for Windows 3.x
QQQ\ODMA32 = DDD for Win32 (i.e. Windows NT and Windows 95)

Installing a Client Application

Windows 3.x, Windows 95 and Windows NT

This section defines the registration database entries ODMA compliant client
applications should make when they are installed. These entries will help
provide improved out-of-the-box integration between applications and Document
Management Systems. They will allow an application to:

1. Enumerate 16-bit and 32-bit ODMA compliant applications on the system,
2. Enumerate file types whose native applications are ODMA compliant, and
3. Quickly determine if a given file type’s native application supports ODMA and

if it expects a 16-bit or 32-bit DMS provider.

Most Document Management and Workflow Management applications have a
function that can push a document to the native application which supports the
document’s content format. The Windows platform provides several functions
which can be used to launch an application to open a document. Examples are
ShellExecute, WinExec and CreateProcess (Win32 only). However, the
calling application needs to be able to determine in a seamless way if it should
be passing a file specification or an ODMA Document ID to the application. For
this reason, applications which support an ODMA Document ID in their

ODMA Version 2.0 81 September 19, 1997

command line or DDE interface must record this information in the registration
database.

In addition to the above, the calling application may need to know if the ODMA
application to be launched is 16-bit or 32-bit. For example, if the calling DMS
application is only 16-bit and the application to be launched is 32-bit, then
perhaps the calling application can downgrade to some other form of application
invocation that doesn’t required a 32-bit DMS.

File type entries take the following form, under the HKEY_CLASSES_ROOT
key:

ODMA.FileTypes\<FileType> = “<AppSubkey>”
ODMA32.FileTypes\<FileType> = “<AppSubkey>”

<FileType> is the same value used in the HKEY_CLASSES_ROOT\.ext entry for
the file extension. Sometimes this value is referred to as a file type class name.
This provides a link back to the file type’s other registration entries. Note that
often applications have more than one file extension pointing to a single file type
class name.

<AppSubkey> is the same as the ODMA application’s AppId, used in
ODMRegisterApp. If the AppId contains spaces they must be removed,
because spaces are not allowed in a subkey.

Application entries are as follows (under the HKEY_CLASSES_ROOT key):

ODMA.ClientApps\<AppSubkey> = “<AppId>”
ODMA32.ClientApps\<AppSubkey> = “<AppId>”

The <AppSubkey> is the same as above. The <AppId> is the regular string
used by the application in ODMRegisterApp. It can contain spaces and is
limited to 15 characters (see the ODM_APPID_MAX constant).

The FullName of a client application can be provided as follows:

ODMA.ClientApps\<AppSubkey>\FullName = “The app name”
ODMA32.ClientApps\<AppSubkey>\FullName = “The app name”

Use the following procedure to determine if the application that supports a given
file type can also handle an ODMA document ID in its command line or DDE
interface. First lookup the file extension entry in the Registry to get the file type
class name. If the extension isn’t found then there is no application supporting
the file type on the system. Next append the file type class name to the
ODMA32.FileTypes\ key and see if the key exists in the registry. If the key

ODMA Version 2.0 82 September 19, 1997

exists, then a 32-bit ODMA-aware application that can accept an ODMA
document ID in its command line or DDE interface should be present on the
system. If the key was not found then the ODMA.FileTypes key can be tested to
determine if a 16-bit ODMA-aware application is present. If a 16-bit DMS client
is initiating this process, it can avoid launching a 32-bit application if it doesn’t
have the correct thunking layers installed on the platform. The reverse is also
true, where a 32-bit DMS might avoid launching a 16-bit application if it does not
support 16-bit ODMA on the platform.

Connection Manager Trace Logging

Windows 3.x, Windows 95 and Windows NT

As of ODMA 2.0, the ODMA Connection Manager is capable of logging function
calls made by any application to any DMS on the system. This trace log
contains information about each function call made, including the App ID of the
calling application and the input values of individual function parameters. It also
includes the information returned by the DMS, like function values and output
parameter values. The trace log contains information about function calls that
are handled by the Connection Manager without DMS involvement (i.e.
ODMGetDMS, ODMSetDMS, ODMGetDMSList, etc.).

The following Windows Registry sub-keys, under HKEY_CLASSES_ROOT,
control ODMA trace logging:

ODMA.ConnectionManager\Logging\Enabled
ODMA32.ConnectionManager\Logging\Enabled

If the entire sub-key described above is defined then the Connection Manager
will do trace logging. To disable trace logging simply remove the “Enabled” sub-
key. There are no default data names or values assigned to this sub-key at this
time.

ODMA.ConnectionManager\Logging\File = “fullpath”
ODMA32.ConnectionManager\Logging\File = “fullpath”

The default filename for the trace log file is “ODMA.LOG” for the 16-bit
Connection Manager and “ODMA32.LOG” for the 32-bit Connection Manager.
The default path is the Windows System or System32 directory as appropriate.
If the File sub-key does not exist then ODMA uses its defaults. If the fullpath is
specified in the data value it must contain a full path and filename. If the fullpath
is invalid the Connection Manager will revert to its default log filename and path.

ODMA.ConnectionManager\Logging\Options = “token1,token2”

ODMA Version 2.0 83 September 19, 1997

ODMA32.ConnectionManager\Logging\Options = “token1,token2”

The Options data value is simply a comma separated string of tokens. There is
no default value defined at this time. The various tokens control trace logging.
They are:

NEWLOG -- If defined then when the Connection Manager DLL is loaded
into memory it will delete any existing log file and create a new log file.
The default behavior is for the Connection Manager to append to any
existing log file.

ODMA Version 2.0 84 September 19, 1997

Appendix A
Document Attributes

The following table describes document attributes or properties defined by
ODMA. Applications can get attribute values for a document by using the
ODMGetDocInfo function. Some attribute values can be set using the
ODMSetDocInfo function. Not every DMS will support every document attribute
listed here. Applications can use the ODMQueryCapability function to
determine if a DMS supports a given document attribute.

Note that the ODMA standard does not currently define maximum lengths for any
specific document attribute. This is DMS specific. In most cases the DMS will
truncate the attribute value returned if it does not fit in the caller supplied buffer.

Attribute/Item ID Description Type Set
ODM_ALTERNATE_RENDERINGS If the DMS supports alternate renderings for the

specified document, then it must return a comma-
separated list of format names representing the
alternate formats it can return in
ODMGetAlternateContent. Refer to the Document
Format Names section for information on how file
formats are identified in ODMA.

String No

ODM_AUTHOR Author of the document. String Yes
ODM_CONTENTFORMAT The format name string indicating the format of the

document’s contents. Refer to the Document Format
Names section for information on how file formats are
identified in ODMA. In ODMGetDocInfo It is
recommended that the DMS return either a MIME
Content Type or a Windows file type/extension. Note
that when this item is used in ODMSetDocInfo, it
merely informs the DMS of a change in the
document's format; it does not cause a conversion
process to take place within the DMS.

String Yes

ODM_CHECKEDOUTBY Username of the person who has the document
checked-out. This username is in the form used by
the DMS. If the document is not currently checked-
out a zero length string is returned.

String No

ODM_CHECKOUTCOMMENT The comment, if any, that the user supplied when
they checked-out the document.

String No

ODM_CHECKOUTDATE The date/time the document was checked-out. If the
document isn’t currently checked-out, a zero-length
string is returned.

Date No

ODM_CREATEDBY Username of the person who initially created the
document in the DMS.

String No

ODM_CREATEDDATE The date/time the document was created in the DMS. Date No
ODM_DOCID_LATEST A null-terminated document ID for the Latest version

of the document represented by lpszDocId. If
lpszDocId is the Latest version, it will be the same
document ID.

DocId No

ODMA Version 2.0 85 September 19, 1997

Attribute/Item ID Description Type Set
ODM_DOCID_RELEASED A null-terminated document ID for the Released

version of the document represented by lpszDocId. If
lpszDocId is the Released version, it will be the same
document ID. If the DMS does not differentiate
Released versions, return the version ID of the Latest
version of the document.

A DMS may allow this attribute to be set. An
application such as a workflow can set a version of a
document to be the released version by specifying
this attribute in a call to ODMSetDocInfo. In this
case, the lpszData parameter should be set to Null.

DocId Yes

ODM_DOCVERSION A null-terminated string which is the version ID for
lpszDocId. This allows the application to display the
version information explicitly (without doing the
impossible and decoding the document ID), for
situations such as where the user is making the
decision to re-link to a different version. It is the DMS
responsibility to consistently translate version
information into a string that can be used for
comparison and display. Since it is a string, and
comparisons will not be made between strings from
different DMS, the application does not have to be
concerned that different DMS have different formats,
meanings and capabilities for version, sub-version,
branching and so on.

String No

ODM_DOCVERSION_LATEST A null-terminated string which is the version ID for the
Latest version of the document represented by
lpszDocId.

String No

ODM_DOCVERSION_RELEASED A null-terminated string which is the version ID for the
Released version of the document represented by
lpszDocId. If the DMS does not differentiate Released
versions, return the version ID of the Latest version of
the document.

String No

ODM_LOCATION A null-terminated string containing DMS specific
information describing the logical location (e.g. folder)
of the document within the data store. The DMS
should format the information in this attribute so that
it can be safely displayed in a user-interface. The
application should not assume the information in this
attribute is persistent across ODMA sessions. A DMS
may allow an application to set this attribute in
ODMSetDocInfo only for documents that have not
been created yet.

String Yes

ODM_KEYWORDS A comma separated list of keywords assigned to the
document.

String Yes

ODM_LASTCHECKINBY Username of the last person to modify or check-in the
document.

String No

ODM_LASTCHECKINDATE The date/time the document was last modified or
checked-in.

Date No

ODM_MODIFYDATE The data/time the document was last modified. Date No
ODM_MODIFYDATE_LATEST The date/time that the Latest version of the document

was last modified.
Date No

ODM_MODIFYDATE_RELEASED The date/time that the version of the document that is
Released was last modified. If the DMS does not
differentiate Released versions, return the date/time
that the Latest version of the document was last
modified.

Date No

ODMA Version 2.0 86 September 19, 1997

Attribute/Item ID Description Type Set
ODM_NAME Name of the document. This is a descriptive name

for the document, not the filename.
String Yes

ODM_OWNER The owner of the document. String No
ODM_SUBJECT The subject matter of the document. String Yes
ODM_TITLETEXT Suggested text to display in the document window's

title bar. This may include one or more fields from
the document's profile and possibly other information
as well.

String No

ODM_TITLETEXT_RO Same as ODM_TITLETEXT, except if the document is
currently opened by the calling application in
ODM_VIEWMODE, the DMS should append “ (Read-
Only)” to the text.

String No

ODM_TYPE Type of the document. This is typically an indication
of the format or content of the document, i.e.
correspondence, memo, contract, etc.

String Yes

ODM_URL Uniform Resource Locator (URL) which provides an
alternative way to access the document. Note that a
DMS can never truncate a URL if it is too long to fit
into the caller supplied buffer.

String No

String = A null-terminated string containing the document attribute value.

Date = A null-terminated string containing a date and time in the following
format: “YYYYMMDDhhmmsscc +hhmm”. The “YYYYMMDD” section contains a
4 digit year, 2 digit month and 2 digit day. The “hhmmsscc” section contains the
time in 24 hour format (hours, minutes, seconds, hundredths of seconds). A
DMS should return zeros for any part of a time it doesn’t support. The “+hhmm”
section is an optional Greenwich Mean Time (GMT) offset. If the GMT string is
included in a date/time string it is preceded by a space, followed by either a +
(plus) or - (minus) character, then a 2 digit hour value and a 2 digit minute value.
A DMS should only return the GMT offset if it knows the offset for the data store
containing the specified document. If the GMT offset is not included, then the
date/time value is the local date and time for the document in the DMS.

DocId = A null-terminated string containing an ODMA document ID.

The “Set” column indicates if the attribute can be set with ODMSetDocInfo. It is
possible that a DMS may not allow certain document attributes to be set.

ODMA Version 2.0 87 September 19, 1997

Appendix B
Preferred Call Usage for Initial File Creation

There has been some misunderstandings among both DMS and application
vendors on the correct use of the ODMA 1.0 calls to initially create a file. This
appendix is basically from a proposal made in October 1994 by Rod Schiffman
of Novell. There has been no dissension on the issue since the original
proposal was made. Until the standard is modified to provide other methods for
the initial creation of a new document in a DMS, this provides a sequence for the
calls that will work with all major DMS vendors.

From Rod Schiffman:

It is probably useful for me to describe the terminology and concepts I will use in
this discussion. A DMS is fundamentally more complex than my description, but
it will suffice for my purposes. A DMS is a black box that manages documents.
My Local System is the particular machine and Operating System, or
environment, that I use. It has its own file system, applications and interfaces.
When I need to do something to a existing document in the DMS, I select it using
tools the DMS provides and retrieve it into my local system. I use an application
to perform operations on the document. I may want to create a new document
with my application. The new document will be stored on my local system until I
save it into the DMS. The DMS may want to tell me where I should save it on
the Local System until I eventually save it into the DMS. I may also want to
update the copy in the DMS while I am still working on it. I call this writing the
document through to the DMS. When I am finally done working on the
document, I can save it to the DMS. It is then closed. At some point in the
process of creating a new document, the DMS will require me to give it a profile.
When I have saved the document to the DMS, it is closed and the document no
longer has a presence on my local machine. ODMA has a vaguely defined
concept of formats that are attached to a document, and while the timing of when
and how formats are defined plays a central role in this discussion, formats,
conversions and their association to documents does not play a role in this
discussion.

ODMSaveDoc is the only ODMA function that actually saves a document into a
DMS. It uses a Document ID (DocID) supplied by the DMS. The initial creation
of the first DocID for the document can only be supplied by ODMNewDoc.
ODMSaveAs and ODMSaveDoc can return a new DocID, but they must already
have an initial DocID to start with. ODMSelectDoc only returns a DocID that
already exists. This means that ODMNewDoc must be called to generate the

ODMA Version 2.0 88 September 19, 1997

initial DocID. After the application has a DocID, it can call ODMOpenDoc to get
a local file name to save the document to and ODMSaveDoc to write the
document through to the DMS. This would imply that it is not necessary to call
ODMSaveAs in the process of saving the document the first time. This has
caused a number of people to assume that the usage of ODMNewDoc was
synonymous with the initial “Save” function in most applications. However, the
spec says that the format specified in ODMNewDoc “may be changed later via
an ODMSaveAs call.” This implies that it is OK to call ODMSaveAs after calling
ODMNewDoc. ODMSaveAs is the only call that allows an application to interact
with the DMS and supply application specific information such as formats and
passwords. If an app only calls ODMNewDoc and does not call ODMSaveAs, it
loses the ability to provide application specific information. ODMSaveAs
requires that a user interface is supplied to the user. If ODMNewDoc also
supplies a user interface, then the user interface comes up twice for each
document creation. Once in ODMNewDoc and again in ODMSaveAs. This is
probably not something that the user wants. Also, how do we reconcile the
ability to call ODMNewDoc without a user interface. If ODMNewDoc is called
with no user interface and a DocID is returned, then when is the profile filled in?
ODMOpenDoc and ODMSaveDoc and ODMCloseDoc have no obvious
provisions for providing a user interface.

ODMNewDoc was originally intended to be synonymous with the “New” menu
choice, not the “Save” menu choice, in most applications. For example,
although SoftSolutions and PC Docs do not care about a document until it is
time to save it to the DMS the first time, DEC TeamLinks does have the concept
of letting the DMS know a document is going through initial creation. There is
nothing in the spec that indicates whether ODMNewDoc should be called at
document creation or just before saving the document the first time. This is not
an accident according to Brad Clements, the original author of the ODMA spec.
It can be done at whatever time makes sense for the DMS and application.
ODMNewDoc does not have provisions for the callback routine because it
notifies the DMS about the creation of a document not the saving of a document.
At document creation time, the user is probably not worried about the what the
final format will be or if there will be a password. The user may not, and this is
crucial, even save the document to the DMS. It is possible that if ODMNewDoc
is called without a user interface, that the DocID returned to the application may
not eventually be used, if the user is allowed to have the file saved to the local
file system in a later call to ODMSaveAs.

It turns out that many applications and Document Management Systems do not
have or need a concept of providing application and DMS interaction until the
document is ready to be saved in the DMS for the first time. Certainly a DMS
must deal with applications that will not provide any interaction with the DMS
until the document is already created in the edit buffer and is ready to be saved.
At this point I would like to point out a scenario that follows the spec, and still

ODMA Version 2.0 89 September 19, 1997

works with major applications that may not have followed the spec according to
the interpretation given here.

At the time of initial document creation, or when it is time to save the document
the application should call ODMNewDoc with the ODM_SILENT flag. This will
return a temporary DocID that the application can use. Technically, the
application could call ODMOpenDoc to have a local temporary file to use until
the document is finally saved into the DMS, but I know that every DMS vendor I
have talked to would frown on this idea. They prefer the idea that all saves are
written through to the DMS and that there is a full profile for anything that exists
in the DMS. It is OK for the DMS vendor require this by returning an
ODM_E_USERINT error to indicate that ODMOpenDoc cannot be called until
the app makes a call to ODMNewDoc or ODMSaveAs that brings up an user
interface. This implies that the application would be better to avoid the situation
and not call ODMOpenDoc until after an user interface is provided to the user.
After calling ODMNewDoc in silent mode, take the DocID that is returned and
call ODMSaveAs to have the profile created, and allow access to the callback
routines. If the ODMNewDoc returns an ODM_E_USERINT error because it
does not support the silent mode, then call ODMNewDoc with a user interface
and skip calling ODMSaveAs. This performs the same functionality, but does
not provide access to the callback routines. If the application still wants the user
to see the callback dialog, then it can call the callback dialog itself after calling
the ODMNewDoc call. This is not optimal, but does work. In either case the
user interface is only presented to the user one time.

There are a couple caveats for DMS vendors. The DocID returned by
ODMNewDoc must be a temporary ID. It is possible that the user will throw
away the file before it is saved, or that it will be saved to the native OS through
the options button in the SaveAs dialog. This could be easily handled by
returning a well known dummy value like ::ODMA\<app id>\NULL. When
ODMSaveAs sees this null value as the DocID, it can know that it is creating the
document for the first time and take appropriate action as opposed to the normal
SaveAs action. It does not matter if there are multiple documents using this
DocID at the same time as long as the DMS returns ODM_E_USERINT to the
ODMOpenDoc call that passed in the null DocID.

Basically, this turns the ODMNewDoc into a fancy NOP routine. There may be
situations where this may not be the best action, but since there is no compelling
reason for the existence of the ODMNewDoc call in the 1.0 spec, it seems to
solve more problems than it creates. It would probably be a good idea to add an
extension to the 1.0 spec in ODMA 1.1 where the ODMSaveAs call can allow a
NULL to be passed in as the lpszDocID parameter to indicate that the document
is being saved for the first time. This would free the application from having to
use the ODMNewDoc call. Of course, that is what the addition of a dummy
DocID value returned from ODMNewDoc accomplishes. In the ODMA 1.1 time-

ODMA Version 2.0 90 September 19, 1997

frame a new ODMNewDoc call can be created if someone comes up with a
compelling reason for its existence. Simply using the ODMSaveAs call when an
application is creating a new file in the DMS, whether it is the first save or an
actual SaveAs, matches the way most applications work today.

Additional information from Bob St.Jean:

ODMA 2.0 introduces an ODMSaveAsEx function that extends ODMSaveAs.
This addresses the specification change Rod Schiffman had envisioned. The
lpszDocId parameter in ODMSaveAsEx can optionally be set to Null by the
calling application. This frees the application from calling ODMNewDoc during
a Save As sequence for a new document. If the application calls
ODMSaveAsEx without first calling ODMNewDoc, then the DMS will return a
DocID in the lpszNewDocId parameter. This may be a temporary DocID that will
later be replaced by a new DocID when ODMSaveDoc or ODMSaveDocEx is
called.

Note that there is a purpose for the ODMNewDoc call in the Save As sequence.
The temporary DocID returned by the DMS in ODMNewDoc will provide a
document context which the application can use to pre-set some document
attributes for the new document before calling ODMSaveAs or ODMSaveAsEx.
This is the only way for an application to pre-set items that might appear in the
DMS’s Save As dialog box. Examples of such attributes are ODM_AUTHOR,
ODM_NAME, ODM_TYPE, ODM_KEYWORDS, ODM_SUBJECT and perhaps
others. The application can set these attributes by calling ODMSetDocInfo
using the DocID returned by ODMNewDoc. The application can call
ODMQueryCapability to find out if the DMS will accept the attributes in
ODMSetDocInfo. However, there is no way for an application to know if the
attributes will be visible in the DMS’s Save As dialog box.

The ODMA 2.0 specification also introduces a way to create documents without
user interaction. The new ODMSaveAsEx, ODMSaveDocEx and
ODMCloseDocEx functions all have an ODM_SILENT flag for this purpose. As
outlined above, ODMNewDoc is used to create a temporary document context
and ODMSetDocInfo is used to set document attributes.

Additionally, ODMA 2.0 recommends a standard for applications and DMSs to
use to identify file format types.

	Overview
	Overview
	Document IDs
	Constants
	Error Handling
	Connections and the ODMA Connection Manager
	Document Format Names
	DMS or Native File System Dialogs - Which to Display First
	Character Sets
	Application Interfaces
	Query Syntax
	Query Examples

	ODMA API
	ODMActivate
	ODMCloseDoc
	ODMCloseDocEx
	ODMGetAlternateContent
	ODMGetDMS
	ODMGetDMSCount
	ODMGetDMSInfo
	ODMGetDMSList
	ODMGetDocInfo
	ODMGetDocRelation
	ODMGetLeadMoniker
	ODMNewDoc
	ODMOpenDoc
	ODMQueryCapability
	ODMQueryClose
	ODMQueryExecute
	ODMQueryGetResults
	ODMQueryInterface
	ODMRegisterApp
	ODMSaveAs
	ODMSaveAsEx
	ODMSaveDoc
	ODMSaveDocEx
	ODMSelectDoc
	ODMSelectDocEx
	ODMSetAlternateContent
	ODMSetDMS
	ODMSetDocEvent
	ODMSetDocInfo
	ODMSetDocRelation
	ODMUnRegisterApp

	DMS Interface
	ODMGetODMInterface
	IODMDocMan Interface
	SelectDoc
	OpenDoc
	SaveDoc
	CloseDoc
	NewDoc
	SaveAs
	Activate
	GetDocInfo
	SetDocInfo
	GetDMSInfo
	GetLeadMoniker

	IODMQuery Interface
	QueryExecute
	QueryGetResults
	QueryClose

	IODMDocMan2 Interface
	CloseDocEx
	SaveAsEx
	SaveDocEx
	SelectDocEx
	QueryCapability
	SetDocEvent
	GetAlternateContent
	SetAlternateContent
	GetDocRelation
	SetDocRelation

	Binding to the API
	Windows 3.x, Windows 95 and Windows NT

	Installing a DMS
	Windows 3.x, Windows 95 and Windows NT

	Installing a Client Application
	Windows 3.x, Windows 95 and Windows NT

	Connection Manager Trace Logging
	Windows 3.x, Windows 95 and Windows NT

	Appendix A
	Document Attributes

	Appendix B
	Preferred Call Usage for Initial File Creation

