
..........

.

ODMJNI1.0-Guide0.20-2006-10-15.doc dh:2006-10-16 02:58

Open Document Management API

Guide &
Usage Scenarios

Review Draft 0.20

ODMJNI 1.0:
Java-ODMA

Reference Integration

Dennis E. Hamilton
NuovoDoc
4401 44th Ave SW
Seattle, WA 98116-4114
+1-206.932.6970
http://NuovoDoc.com

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 2 - dh:2006-10-16 02:58

Guide & Usage Scenarios
ODMJNI 1.0:
Java-ODMA Reference Integration

1 Overview... 4

1.1 Simple ODMA-Awareness Principles 5
1.2 Design Principles... 6
1.3 Integration Principles ... 7

2 Basic Connection Lifecycle.. 9

2.1 Establish the Connection Interface... 9
2.1.1 Standard Connection Interface... 9

2.1.2 Substitute Connection Interfaces.. 10

2.2 Use the Connection Interface... 10
2.2.1 Check Status of ODMA Connection.................................... 10

2.2.2 Obtain DMS Document Interfaces 11

2.3 Close the Connection Interface.. 12
2.4 Restrictions.. 12
2.5 Additional Considerations .. 13

3 Basic Document Lifecycle.. 13

4 Scenario: New Managed-Document Creation 13

4.1 Conditions for Saving of Anonymous Documents 15

5 Scenario: Choosing Managed-Document to Use........................... 16

6 Scenario: Using a Known Managed-Document 16

7 Scenario: Building Managed-Documents from Templates........... 17

8 Class, Interface, and Method Documentation................................ 18

9 Packaging and Deployment ... 18

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 3 - dh:2006-10-16 02:58

10 Confirmation and Troubleshooting of Operation........................... 18

11 Resources and Reference Materials.. 19

12 Appendix: Revision History.. 19

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 4 - dh:2006-10-16 02:58

1 Overview

REVIEW DRAFT: This is a preliminary version of the Guide & Usage
Scenarios document for early review of feasibility and usage in conjunction
with a pilot desktop application. The material is incomplete and tentative.
This document will be revised as implementation experience is gained.

IMPORTANCE FOR EARLY ADOPTERS: This document need not be fully
completed in order for ODMJNI to be placed in use. The intention is to have
sufficient material in this document, the development progression notes, and
working code to expedite early simple use in production. Non-critical
refinements to this document will be made when ODMJNI is stable enough for
possible adoption in other Java-based desktop applications.

IMPORTANT REVIEW POINT FOR EARLY ADOPTERS: It is important
to ensure that the basic principles, especially those for Simple ODMA-
Awareness, can be accommodated in the application being considered. It is
especially important to review these principles in the case of an existing
application to which ODMA-awareness is to be added.

The ODMJNI 1.0 Java-ODMA integration implements simple ODMA-aware
operation for Java-based desktop applications.

ODMJNI 1.0 does not attempt to deliver the ODMA API in Java form. Instead,
there are simple Java interfaces that support common desktop scenarios involving
optionally-managed documents. The purpose is to provide smooth integration
with the common document operations that desktop applications perform. Detailed
understanding of ODMA operation is not required.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 5 - dh:2006-10-16 02:58

1.1 Simple ODMA-Awareness Principles
Simple principles apply for desktop document applications that implement the basic
essentials of ODMA-aware operation.

1. The application provides some equivalent of a single- or multiple-
document interface of the Microsoft Windows Platform.

a. It uses typical/common menus and dialogs for making new
documents and storing, retrieving, and manipulating documents that
are stored in the local file system and other file systems that may be
accessed through remote connections as if local files.

b. The ODMA-awareness of Microsoft Office Word editions since
Office 98 is the popular benchmark that all widely-used ODMA-
compliant Document Management Systems accept with ease.

2. When no ODMA Connection Manager is found, or there is no ODMA
DMS available for default use by the application, the software simply
behaves as an ordinary ODMA-unaware desktop application, using menus
and dialogs that are familiar for those purposes.

3. When the ODMA Connection Manager is present and there is an ODMA-
compliant Document Management System (DMS) available for default use,
the desktop application is expected to give the ODMA DMS first refusal
in all operations that create, save, access, and update documents for
retention and management by the DMS. The application automatically
initiates operation with the ODMA DMS via the ODMA Connection
Manager API (directly or via library support, such as that of ODMJNI).

4. As part of obtaining details and confirmation from the users of desktop
applications, the ODMA DMS presents its own dialogs and information
windows for the user. The user always has options to

a. Cancel the operation requested of the application,

b. Request that the application perform the operation instead of the
DMS, or

c. Use the DMS, possibly after an initial DMS sign-on and provision
of other information requested by the DMS.

5. When the application is informed that the operation was cancelled, it
should behave the same as its own file-oriented dialog had been cancelled.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 6 - dh:2006-10-16 02:58

6. When the application is informed that the application should perform its
version of the operation, the application should do so, providing its own
dialogs for the operation (e.g., Open, Save, or Save As).

7. When the application is informed that the DMS performed the operation,
the application continues the same as it would after performing the
operations itself.

8. If the application is informed that the DMS failed, the application should
continue the same as if a file-system operation failed or was rejected.
Depending on the scenario being followed, there may need to be special
care to ensure that the user's work is not lost and there is no unbreakable
cycle of ODMA re-attempts.

9. It will be necessary for an application to accurately track whether any
working document held within the application

a. Is not yet associated with a location on disk or in a DMS

b. Is associated with a conventional file-system location

c. Is associated with an ODMA DMS, having an ODMA Document
ID and a file-system docLocation used for transferring the
document file between the application and the DMS

d. Has any content that has not been reflected in a stored file in either
a file-system location or an ODMA DMS

ODMJNI 1.0 simplifies the simple scenarios by reducing the number of operations
that a Java-based desktop application must perform in coordinating with ODMA
and an ODMA DMS. The classes that implement the ODMJNI bridge handle the
fine details automatically and relieve the application from any direct use of the
ODMA API.

1.2 Design Principles
The ODMJNI 1.0 interfaces are designed to fit the requirements of a typical ODMA
1.0-aware desktop application.

1. The design permits straightforward following of simple scenarios.

2. The implementations of interfaces that introduce ODMA awareness for the
application perform all housekeeping necessary for adjusting to the
availability of the ODMA Connection Manager and the presence of any
default ODMA DMS for the application.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 7 - dh:2006-10-16 02:58

3. It is not necessary for the application to keep track of whether or not the
ODMA connection is usable.

a. The interface can be checked prior to attempting to coordinate
individual operations. If ODMA is not available, the application
can simply perform its local alternative at once.

b. The operation can be attempted and, if ODMA is not usable, that
will be quickly reflected in the result, and the local alternative can be
performed.

c. The intention is to permit sequences of operations that may be the
most convenient fit with the application's implementation of file-
oriented operations.

4. There are no checked exceptions thrown by ODMJNI interface methods.

a. Fabricating exceptions from native method implementations is
costly, and the ODMA API is not exception-oriented. There is
always some result, even for unsuccessful operations.

b. There are simple method calls for determining the outcome of an
operation and whether exceptional treatment is required.

c. Operations that return interfaces for new objects, such as a document
that is managed by an ODMA DMS, always return valid interfaces.
When there is no valid document, an easily-recognized null-
document interface is returned.

d. Methods that return data (usually Java String or arithmetic values)
will return default "null" values when there is no usable data value
(e.g., for the docLocation when no ODMA DMS document is
available).

1.3 Integration Principles
ODMJNI 1.0 is implemented as components. Substitution of component
implementations is supported by having all references to ODMA-aware functions
be through implementation-independent interfaces. The following principles apply:

1. No classes with native methods are exposed to the desktop application.
This allows the application to operate entirely with interfaces that conceal
platform dependencies.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 8 - dh:2006-10-16 02:58

2. An application can choose among available implementation classes for
ODMA-aware features by having one simple interface-reference declaration
(section 2.1, Establish the Connection Interface).

a. Compatible substitutions of the named implementation class can be
installed without having to recompile or update the application.

b. Different but compatible implementation classes can be substituted
by recompiling only that application class in which the initial
interface reference is created.

3. Once an implementation is chosen, all further interaction is through
references to the common, implementation-independent interface.

4. When a method of an ODMJNI component interface delivers another
ODMJNI component implementation as its result, that result is always a
valid reference to an interface.

a. The implementation classes that provide the interface are not
disclosed to the application.

b. Error and exception conditions that apply to the delivered interface
can be determined by using methods on the delivered interface.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 9 - dh:2006-10-16 02:58

2 Basic Connection Lifecycle
For a Java application to be ODMA-aware, it must maintain an ODMA connection
for the duration of operation.

This is accomplished by creating a Connection interface and maintaining it until no
document operations are required.

The connection need not be active at all times. The ODMJNI implementation
delays establishment of an actual connection until the application requires
availability of the connection to be known in order to advise the application
whether ODMA document operations or local desktop operations should be
performed in a particular situation.

It is also valuable to close the connection when it is known that further operations
will not be required.

2.1 Establish the Connection Interface

2.1.1 Standard Connection Interface

Connections via ODMJNI implement the Java interface

info.odma.simple100.Connection

Ideally, the desktop application will establish a single connection and employ only
that interface from then on. For example, the Java declaration

info.odma.simple100.Connection

 MyOdma = new info.odma.odmjni.Simple100Connection("MyAppId");

uses the ODMJNI Simple100Connection class to implement a Connection
interface referenced by application variable MyOdma. All subsequent ODMA
operations can be carried out via methods on MyOdma and the additional interfaces
delivered by any of those methods.

The info.odma.simple100 package is for those interfaces and related
elements that supply simple ODMA-awareness to an application using only
features of the ODMA 1.0 API, the common subset of all ODMA versions.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 10 - dh:2006-10-16 02:58

2.1.2 Substitute Connection Interfaces

Having this single point where the implementation is specified makes it easy to test
applications and to upgraded to alternative implementations, so long as the same
interface is supported. For example, the declaration

info.odma.app100.Connection

 MyOdma = new info.odma.simple100.NullConnection("MyAppId");

uses a standard null connection. In this case, all use of MyOdma methods will
respond exactly as if ODMA is unavailable for use by the current application
execution.

This and other substitute connection-implementation classes can be used to confirm
that the application is behaving properly when ODMA operations are not to be
used.

{Author Note 2006-10-15: The implementation of interface and the interface
needs to be distinguished more clearly. There are also two cases:

1. naming of a specific implementation in the declaration of a reference to
the interface, as shown above

2. using the same implementation name but substituting components
relied upon for the implementation

The second method might be relied upon during initial development, and may
be more useful in troubleshooting where the source code of the ODMA-aware
application is not available.}

2.2 Use the Connection Interface
There are two kinds of methods on the Connection interface: ones for determining
the status of the connection with ODMA and an ODMA DMS, others for
conducting operations with ODMA DMS documents

2.2.1 Check Status of ODMA Connection

The connection method

boolean dmsAvailable()

returns true when there is an ODMA DMS available for operating with this
execution of the desktop application. Otherwise, false is returned and other
operations will behave the same as for a null connection implementation.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 11 - dh:2006-10-16 02:58

A connection interface's dmsAvailable false result will never change back to
true. It is safe to skip use of further ODMA operations in this case. Continuing
to attempt additional operations is harmless, however.

ODMJNI delays linking to the ODMA Connection Manager and determining
availability of an ODMA DMS until the first Connection interface operation is
performed. Performing a dmsAvailable check qualifies.

2.2.2 Obtain DMS Document Interfaces

Three basic connection methods engage an ODMA DMS directly. Each of them
delivers a document interface of type

info.odma.simple100.Document

The methods are

Document acceptNewDocument()

Document chooseDocument()

Document openKnownDocument(String docID)

Choice of method depends on the nature of the scenario being implemented:

• Having a new document that is not yet associated with a local file or
ODMA document

• Requesting provision of an ODMA DMS document file of the user's
choosing

• Requesting provision of an ODMA DMS document file whose ODMA
Document ID is already known

The resulting document interface is used for operations with the specific document,
including determination of successful availability.

{Author Note: There are optional parameters that will be defined when the
scenario sections are expanded.}

{Author Note: It is a peculiarity of ODMA that a known document ID can be
used for any DMS registered on the computer that the application is running
on. However, the operation can't be performed unless there is already a
specific DMS established as the default DMS for the application, even though
that is not the DMS for which a known ID is to be used. There is no attempt to
work around this situation in ODMJNI 1.0.}

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 12 - dh:2006-10-16 02:58

2.3 Close the Connection Interface
A connection interface (such as the one referenced by MyOdma in section 2.1.1)
will be released automatically by the Java system some time after it is no longer
reachable by the application.

The method

void close()

allows the connection implementation to release no-longer-needed resources as
early as possible, even though the application is not terminating and there may still
be document interfaces in use.

Using close() is an assurance from the application to the connection
implementation that no further requests for usable document interfaces need be
satisfied.

When a connection implementation is closed, further use of connection interface
methods will be the same as for a null connection. In particular,
dmsAvailable() will return false.

Closing a connection has no impact on still-available document interfaces
previously obtained via that connection.

{Author Note: Although closing a connection while there are still-usable
document interfaces from that connection may require retention of most DMS-
related resources until the documents themselves are released, closing the
connection assures that the resources will be released as soon as all current
document interfaces are released.

If there have been errors in ODMA operations that suggest the DMS is not
functioning properly, or the user has a way of indicating that ODMA should
not be used for further document creation and access operations, closing the
connection is the simplest way to provide null-connection responses for any
additional ODMA-aware operations at the connection level.}

2.4 Restrictions
The instantiation of a connection implementation and all use of interfaces for
ODMA connections and documents must be conducted on the same Java thread.
This must be the application user-interface thread.

This restriction is required by Java. It is also required in order for the connected
ODMA Document Management System (DMS) to communicate with the
application user via the user interface.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 13 - dh:2006-10-16 02:58

{Author Note: This requirement will be defined more precisely after
implementation testing. The user-interface thread case will be verified in the
early testing of the ODMJNI pilot integration.}

2.5 Additional Considerations
Connection-implementing classes can throw unchecked exceptions from
constructors and interface methods. There are no workarounds. The application
will be terminated.

Although the exceptions are unchecked, they are all documented in the class and
interface definitions.

For example, if an ODMA AppId provided to the NullConnection constructor
is not correctly formatted, the constructor will fail with an unchecked exception.
Since AppId strings are generally built into the program, there is no reason for this
check to fail in a correctly running production application.

In case some standard ODMA parameters are obtained from input sources and not
built into the program, there are static methods that can be used to verify the correct
format of data before submitting the data to the ODMA methods.

{Author Note: Name the class of the unchecked exception and reference the
section where the exceptions are defined.}

{Author Note: Identify the class used for format-checking ODMA parameter
strings and reference its definition.}

3 Basic Document Lifecycle
{To be supplied. This is about the general care and feeding of the
info.odma.simple100.Document interfaces obtained from Connection
interfaces (section 2.2.2).}

4 Scenario: New Managed-Document Creation
This scenario involves there being an application document for which no associated
file-system or DMS location has been determined – the document exists in its
present state only in the custody of the application and nowhere else and we speak
of it as an anonymous document.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 14 - dh:2006-10-16 02:58

An anonymous document can always be saved at the request of the user. There are
also situations where the application invites the user to save the document lest work
be lost. Either way, the first step is to offer the document to ODMA unless it is
already known that dmsAvailable() is false.

When an anonymous document is to be saved, the ODMA-aware application must
first offer the document to the ODMA Document Management System via
connection-interface method acceptNewDocument(). If that request is
declined, the application will either abandon the save operation or offer its own File
| Save As … dialog to the user.

If the acceptNewDocument() returns a Document interface for which
Document.operationSucceeded()is true, completion of the save
operation should be carried out using that Document interface.

If the acceptNewDocument() request returns a Document interface for which
Document.operationCancelled() is true, the application should cancel
the save operation only when doing so does not lose any work. This will be when
the document can be kept open and the user will still have the opportunity to choose
to save the document or not. If the document can't be kept open (e.g., because of a
pending shutdown), the request should be treated as if
Document.localOperationRequested() is true.

If, instead, the returned Document interface has
Document.localOperationRequested() true, or
Document.operationSucceeded() false, the application should
automatically offer its own equivalent File | Save As … dialog.

Even when Document.operationSucceeded() is true, the additional
steps involved in saving the document may fail. Continuation from those failures
should be as if the original acceptNewDocument() request was cancelled or
failed, as appropriate.

{Author Note: The overall scenario continues with saving the file to the
location specified by the value of Document.docLocation and then
advising the DMS that the file is available for transfer to custody of the DMS.
If that succeeds, continuation is essentially the same as if there had been a
successful openKnownDocument at that point. This scenario needs to be laid
out simpler and then deeper. That can be figured out when we see how to
refactor the presentation of all of the scenarios to be economical and straight-
forward.}

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 15 - dh:2006-10-16 02:58

4.1 Conditions for Saving of Anonymous Documents
{Author Note: I am not satisfied with having all of this material under this
heading. Basically, it is a matter of whether or not there is unsaved content.
Then it matters whether the document is anonymous or not, and then whether
it is an ODMA document or not. After more material is gathered here, it will
need to be refactored to be presented better. Also, there is some level of
scenario that applies to the user's world and not so much what is happening
internal to the ODMA-aware application.}

• In document creation applications, this can occur when there is a fresh
document in which content has been entered. For example, when Microsoft
Office Word is started directly, an initial blank document (with a
provisional name such as "Document1") is available for receipt of content.

• Generally, if there is a new document open that has received no content,
there is not considered to be any requirement to save the document. For
example, if Microsoft Office Word is closed with a fresh blank document
open, the blank document is simply discarded without any action required of
the user.)

• When documents are constructed based on templates, it depends on the
design of the application whether or not there is considered to be unsaved
content. For example, when Microsoft Office Word is used to start a new
document using an identified template, Word will request confirmation that
the document be preserved once any content customization has occurred:

Figure 1. Word invitation to save a fresh template-based document

• Whether or not any content has been introduced, the user can request saving
of the open but anonymous document to a persistent location.

• When an anonymous document is to be closed and there is unsaved content,
the application is expected to give the user an opportunity to save any work
before the document is closed and the work is lost. This can occur in a wide
variety of situations. E.g.,

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 16 - dh:2006-10-16 02:58

o The user selects File | Close on an application menu.

o The user selects a "Close Window" button in the
application window that displays the document

o The user selects a "Close" button for the application
itself and there are one or more anonymous open
documents

o "Logoff" of the user session is requested, leading to an implicit close
of the application.

o "Turn Off Computer" is selected and the application is still open in
the current session

• When an anonymous document is saved, the behavior is always equivalent
to the usual File | Save As … menu selection because there is no understood
location of the document.

{To be developed further. See section 2.2.2 for the basic idea. There are
similar situations when the document is not anonymous, but has been changed.
Then there must also be an invitation to save the content, and the only
difference is that it will be saved to the known location when that is available.
If it is not available, a Save As may be forced anyhow. The additional prospect
of saving it to a DMS or not saving it to a DMS makes the ODMA-aware
scenario more complicated.}

5 Scenario: Choosing Managed-Document to Use
{To be supplied. See section 2.2.2 for the basic idea.}

6 Scenario: Using a Known Managed-Document
The openKnownDocument request is used when it is known that an ODMA-
managed document is to be used. The ODMA-aware application already has an
ODMA Document ID and the corresponding document is to be opened for use by
the application.

An application may encounter an ODMA Document ID in any one of the following
ways:

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 17 - dh:2006-10-16 02:58

1. An ODMA Document ID may be provided as a command-line parameter to
the application. The format of ODMA Document IDs is such that they
cannot be confused with ordinary file-system names.

2. An ODMA Document ID may be carried in the application's recent
documents list and be selected by the user as a document to be opened.

3. An ODMA Document ID may be carried in the Microsoft Windows
"Recent Documents" list in a way that is associated with the current
application, leading to case (1).

4. ODMA Document IDs are stored in documents of the application as links
to other, related documents. Exercising one of those links in the
application may result in having to access the known document.

5. ODMA Document IDs may be received by users (e.g., via e-mail or
workflow-system messages) and supplied in file-open dialogs or by direct
interaction with the Document Management System, leading to case (1).

For these situations, there is no first-refusal situation. The application has an
explicit requirement to access an ODMA document. Fall-back behavior in the
event that openKnownDocument() fails is entirely application-dependent.

{To be continued. See section 2.2.2 for the basic idea.}

7 Scenario: Building Managed-Documents from Templates
In many applications for managed documents, the document creation procedure
involves reliance on pre-existing templates for creation of documents. These
template-based documents may also fit into a workflow discipline. The overall
procedure is something like this:

1. Template Creation. The template for a type of document or form is created
and available as part of a work process. The template may itself be a
managed document or it may be distributed by some other means.
Templates may be developed in different applications than those used in
document initiation and content entry. Templates may be introduced into
the DMS via the DMS rather than via an ODMA-aware application.

2. Document Template Selection. When a document of a particular type is to
be created, the template is named as part of document initiation (as in the
Microsoft Word File | New … dialog). The template could also be retrieved
as a managed document.

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 18 - dh:2006-10-16 02:58

3. Document Initiation. For applications that (optionally) operate from
templates, it is important that the application treat the document triggered by
the template as if it is an anonymous document. That is, saving the
document should not be considered submission of a replacement for the
template. The template is not the document being created or manipulated.
In this case, the document that is started from the template is treated
essentially the same as a new document (section 4, Scenario: New
Managed-Document Creation), and normal ODMA-aware behavior places
the new document under management and under any automated workflow
procedures.

4. Alternative Document Initiation. When the ODMA-aware application does
not distinguish between templates and pre-existing documents, the effect of
specialized document types and their templates can be achieved by
procedure rather than by reliance on a template feature of the application.
This is accomplished by employing read-only documents as boilerplate for
customization in use of the application. It is important, in this case, that any
DMS-provided template documents be delivered as read-only so that a Save
As … operation is required in order to introduce the modified boilerplate as
a new managed document .

5. Once a template-based document (initiated by either method) managed as an
ODMA document, modified versions are returned to the DMS in the usual
way, as part of Save and Close operations in the application. Whether the
document is held in a working state or is checked in for progressing in some
workflow procedure is determined external to the ODMA-aware application
by interaction between the user and the DMS, using the dialogs presented
by the DMS in response to ODMA-aware actions of the desktop application.

8 Class, Interface, and Method Documentation
{To be supplied}

9 Packaging and Deployment
{To be supplied}

10 Confirmation and Troubleshooting of Operation
{To be supplied}

 ODMJNI 1.0: Java-ODMA Reference Integration Guide & Usage Scenarios 0.20

ODMJNI1.0-Guide0.20-2006-10-15.doc - 19 - dh:2006-10-16 02:58

11 Resources and Reference Materials
Liang, Sheng (1999).

The Java Native Interface: Programmer’s Guide and Specification. Addison-
Wesley (Reading, MA: 1999). ISBN 0-201-32577-2. Available at
http://java.sun.com/docs/books/jni/. The files for worked examples are also
available. The necessary header files and the javah command-line tool are
provided as part of the Java SDK.

{Accurate list to be supplied:

Add link to the Microsoft Office Word application whose behavior is used as
an example.

Add links to the relevant Java specifications on packaging, interface usage in
component development, and style/naming practices.

Add links to the ODMA Specifications where the simple ODMA-aware
principles can be teased out.

Add link to the ODMA FAQ that describes the basic connection principle.}

12 Appendix: Revision History
Review Draft 0.20 (2006-10-15): An additional scenario for building documents

from templates (section 7) is introduced for its importance in forms-based
applications, often found in workflow processes. The notion of anonymous
documents is introduced to motivate the situations in which
acceptNewDocument() is used (section 4). The importance of
openKnownDocument() is identified by a list of the ways that it can show up
in document-processing workflows and in returning to previous work (section
6). These sections are still very rough and will need to be refactored to have
all cases covered in a straightforward way. They are presented for early
review so that usability requirements for an initial pilot operation can be
appraised.

Review Draft 0.10 (2006-10-02): The basic outline is created with anticipation of
separate usage scenarios for anonymous unsaved documents, choosing
existing documents, and choosing known documents. The basic principles of
the connection interface are sketched, along with identification of three
different methods for establishing managed documents.

http://java.sun.com/docs/books/jni/

	1 Overview
	1.1 Simple ODMA-Awareness Principles
	1.2 Design Principles
	1.3 Integration Principles

	2 Basic Connection Lifecycle
	2.1 Establish the Connection Interface
	2.1.1 Standard Connection Interface
	2.1.2 Substitute Connection Interfaces

	2.2 Use the Connection Interface
	2.2.1 Check Status of ODMA Connection
	2.2.2 Obtain DMS Document Interfaces

	2.3 Close the Connection Interface
	2.4 Restrictions
	2.5 Additional Considerations

	3 Basic Document Lifecycle
	4 Scenario: New Managed-Document Creation
	4.1 Conditions for Saving of Anonymous Documents

	5 Scenario: Choosing Managed-Document to Use
	6 Scenario: Using a Known Managed-Document
	7 Scenario: Building Managed-Documents from Templates
	8 Class, Interface, and Method Documentation
	9 Packaging and Deployment
	10 Confirmation and Troubleshooting of Operation
	11 Resources and Reference Materials
	12 Appendix: Revision History

